Энциклопедия Кругосвет
Энциклопедия Кругосвет
Универсальная научно-популярная энциклопедия

ИСТОРИЯ и ОБЩЕСТВО

  • Экономика и Право
  • Психология и Педагогика
  • Социология
  • Философия
  • Религия
  • Народы и Языки
  • Государство и Политика
  • Военное дело
  • Археология
  • История
  • Лингвистика

ПУТЕШЕСТВИЯ и ГЕОГРАФИЯ

  • География
  • Геология
  • Страны мира

ИСКУССТВО и КУЛЬТУРА

  • Живопись и Графика
  • Скульптура
  • Архитектура
  • Декоративно-прикладное искусство
  • Дизайн и Фотография
  • Литература
  • Музыка
  • Театр и Кино
  • Эстрада и Цирк
  • Балет

НАУКА и ТЕХНИКА

  • Авиация и Космонавтика
  • Астрономия
  • Биология
  • Военная техника
  • Математика
  • Технология и Промышленность
  • Транспорт и Связь
  • Физика
  • Химия
  • Энергетика и Строительство

ЗДОРОВЬЕ и СПОРТ

  • Медицина
  • Спорт

АБСТРАКТНЫЕ ПРОСТРАНСТВА

АБСТРАКТНЫЕ ПРОСТРАНСТВА. В первоначальном значении слово «пространство», как оно используется в геометрии, означало трехмерное пространство в отличие от двух измерений, изучением которых занимается планиметрия. Так как положение любой точки в пространстве можно указать, задав три ее координаты, естественно было рассмотреть сходные математические объекты, обладающие более чем тремя координатами. Следующий шаг привел к изучению объектов с бесконечным числом координат, т.е. к объектам, имеющим бесконечно большое число измерений. Пространство определяют как множество каких-либо объектов, называемых его точками. Точками таких пространств могут быть бесконечные последовательности чисел, функций или других объектов. В отличие от конкретных пространств обычной геометрии, такие пространства часто называют абстрактными. Одна из причин, по которой эти объекты называют пространствами, заключается в том, что эффективным средством их анализа является язык геометрии.

Также по теме:
ГЕОМЕТРИЯ
ГЕОМЕТРИЯ
Также по теме:
МАТЕМАТИКА
МАТЕМАТИКА

Множество точек, определяющих пространство, должно удовлетворять аксиомам, опирающимся на достаточное число геометрических понятий, без которых нельзя было бы воспользоваться языком геометрии. Наиболее общие пространства, допускающие описание на языке геометрии, называются топологическими пространствами. Пространства, в которых над точками можно производить «сложение», как над векторами, называются линейными, или векторными, пространствами. (Изучением бесконечномерных пространств занимается функциональный анализ.) Метрическими называются такие пространства, в которых определено расстояние между точками. Частным случаем линейных метрических пространств являются банаховы пространства, получившие название в честь польского математика С.Банаха (1892–1945). Частным случаем банаховых пространств служат гильбертовы пространства, названные в честь немецкого математика Д.Гильберта (1862–1943). Гильбертово пространство является обобщением понятия евклидова пространства на бесконечномерный случай. В физике гильбертово пространство служит основой квантовой механики. Многие физические задачи можно решить, воспользовавшись фактами из теорий дифференциальных и интегральных уравнений, которые устанавливаются особенно просто, если использовать абстрактные пространства.

Также по теме:
Математика

Проверь себя!
Ответь на вопросы викторины «Математика»
Как звали математика, который в 19 лет решил задачу, не поддававшуюся усилиям лучших геометров со времен Евклида?
Пройти тест
Разделы энциклопедии
-A +A
Проверь свои знания!
Ответь на вопросы викторины

Короли

Пройти тест

Эпоха Возрождения

Пройти тест

Животные

Пройти тест

Известные династии

Пройти тест
Ещё тесты
  • Тесты
  • Правила
  • Авторы
  • О проекте
  • Контакты
© 1997-2025 Универсальная научно-популярная энциклопедия Кругосвет