Содержание статьи
    Также по теме

    ГЕОФИЗИКА

    ГЕОФИЗИКА, комплекс наук, исследующих физическими методами строение Земли. Геофизика в широком смысле изучает физику твердой Земли (земную кору, мантию, жидкое внешнее и твердое внутреннее ядро), физику океанов, поверхностных вод суши (озер, рек, льдов) и подземных вод, а также физику атмосферы (метеорологию, климатологию, аэрономию).

    В настоящей статье рассматривается исключительно физика твердой Земли, основными разделами которой являются сейсмология, геодезия, гравиметрия, геомагнетизм, геоэлектрика, геотермия, реология, физика минералов и горных пород. Прикладная геофизика разрабатывает методы и теорию геофизической съемки и геофизической разведки, главным образом с целью поиска месторождений полезных ископаемых (см. ГЕОФИЗИЧЕСКАЯ РАЗВЕДКА). Морская геофизика проводит исследования в морях и океанах.

    Геофизика использует данные других наук, в основном физики и геологии, а также математики, астрономии, кристаллографии, геохимии. Большое влияние на развитие геофизики оказали результаты космических исследований и развитие теории тектоники плит.

    Сейсмология изучает землетрясения, их механизмы и последствия, распространение сейсмических волн, а также все виды движений земной коры, которые регистрируются сейсмографами на суше и на дне океанов и морей. Наиболее активные землетрясения наблюдаются в ослабленных зонах вдоль границ тектонических плит. При этом возбуждаются три типа сейсмических волн: продольные (P), поперечные (S) и поверхностные (волны Лява и Рэлея). Сильные землетрясения могут также возбуждать свободные колебания всей Земли.

    Выбором сейсмически безопасных мест для строительства проектируемых сейсмостойких сооружений занимается инженерная сейсмология. Реальной методологии точного прогноза времени и места землетрясений пока не существует. Известно, что наиболее сильные землетрясения сопровождают процесс субдукции (поддвига) в глубоководных желобах или движения по трансформным разломам. Это позволяет прогнозировать районы возможных землетрясений. Информация о силе ожидаемых толчков крайне необходима для определения возможной интенсивности сейсмических воздействий на такие сооружения, как ядерные реакторы, плотины, мосты и здания.

    Сейсмические методы используются для изучения внутреннего строения Земли в целом и ее структуры на разных глубинах. Следует отметить, что на основе результатов сейсмических исследований установлено, что Земля состоит из ядра, мантии и земной коры. Использование цифровых сейсмографов сыграло огромную роль в изучении земных недр и позволило регистрировать землетрясения. По данным об изменениях скоростей волн была составлена трехмерная схема строения мантии. Структура верхней мантии, определяемая по скоростям сейсмических волн, различна для районов срединно-океанических хребтов и материков и соответствует распределению теплового потока. Сходная картина в изменениях скоростей волн отмечается и в нижней мантии, однако они не коррелируют с макрорельефом поверхности Земли. См. также ЗЕМЛЕТРЯСЕНИЯ.

    ВНУТРЕННЕЕ СТРОЕНИЕ ЗЕМЛИ, установленное по геофизическим данным об изменении давления с глубиной (100 ГПа = 1 Мбар = 106 атмосфер).

    Геодезия исследует главным образом форму Земли. Различают две геодезические задачи: определение параметров сфероида или эллипсоида (дающего наилучшее совпадение с поверхностью моря), в первом приближении аппроксимирующего форму Земли, и измерение отклонений действительной поверхности геоида от сфероида. По существу, форма Земли представляет собой эллипсоид вращения, слегка сплющенный на полюсах. Определение формы геоида и сфероида осуществляется в основном путем сочетания наземной геодезической съемки и изучения орбит искусственных спутников Земли. Изменения формы Земли, связанные с перемещением литосферных плит, определяются по данным радиоинтерферометрии и Системы глобального определения местоположения (GРS). См. также ГЕОДЕЗИЯ.

    Гравиметрия занимается изучением гравитационного поля Земли. Локальные вариации этого поля, связанные с плотностными неоднородностями в пределах земной коры, используются для определения положения рудных тел. Полагают, что рельеф земной поверхности и плотностные изменения внутри земной коры с глубиной взаимно компенсируются, поэтому удовлетворительная корреляция между гравитационными аномалиями протяженностью 100-1000 км и рельефом не наблюдается.

    Геомагнетизм исследует магнитное поле Земли (его источники и изменения на протяжении геологической истории Земли), а также магнитные свойства горных пород. Принято считать, что магнитное поле Земли обусловлено электрическими токами в жидком внешнем ядре, его напряженность изменяется с периодичностью от 100 до 10 000 лет, а полярность подвержена обращениям (инверсиям). Измерения интенсивности и направления намагниченности горных пород позволяют изучать происхождение и изменения во времени геомагнитного поля и служат ключевой информацией для развития теории тектоники плит и дрейфа материков. См. также ГЕОМАГНЕТИЗМ.

    См. также МАГНИТНОЕ ПОЛЕ ЗЕМЛИ.

    Геоэлектрика изучает изменяющуюся с глубиной электропроводность Земли путем наблюдений за изменениями магнитного поля. Взаимодействие вариаций магнитного и электрического полей, обусловленных как естественными, так и искусственно индуцированными токами, используется в магнитотеллурическом зондировании при разведке полезных ископаемых и для изучения строения нижней части коры и верхней мантии. См. также ГЕОФИЗИЧЕСКАЯ РАЗВЕДКА.

    Геотермические исследования основаны на измерении теплового потока и теплопроводности, а также радиоактивности вблизи поверхности, которые затем экстраполируются на глубину. Тепловое излучение Солнца оказывает незначительный эффект на недра Земли. Точно так же энергия, высвобождаемая при землетрясениях и приливном трении, мала по сравнению с геотермальными потерями тепла. Предполагается, что главный источник тепла в Земле обусловлен радиоактивным распадом долгоживущих радионуклидов, а также высвобождением гравитационной энергии и распадом короткоживущих радионуклидов. Современный тепловой поток Земли подвержен большим изменениям. На материках он зависит от радиоактивности коренных пород, причем на долю мантии приходится примерно половина общего теплового потока. В океанах он вдвое больше, чем на материках, и обусловлен, главным образом, конвекцией в мантии.

    На глубинах ниже 100 км распределение температур и источников тепла, а также механизм его переноса точно не установлены. Конвекция, вероятно, происходит в верхней мантии и внешнем ядре, но неясно, насколько она активна в нижней мантии. На ранних этапах истории Земли термальная конвекция могла быть более интенсивной. В вулканических областях, срединно-океанических хребтах и областях гидротермальной активности обнаружен более высокий тепловой поток.

    Реология занимается изучением остаточных деформаций и течения вязких и пластичных материалов. Применительно к Земле это обычно означает исследование вязкости внутренних слоев и ее изменений во времени, а также глубинных движений вдоль разломов, перемещений литосферы относительно астеносферы, субдукции литосферных плит, трещинообразования в горных породах, крипа и т.п. Прямые измерения вязкости в недрах Земли невозможны, однако ее оценки могут быть выполнены на основе изучения скорости поднятий таких древних областей, как Канадский и Балтийский щиты, ранее опустившихся под действием ледниковой нагрузки. Согласно этим оценкам, вязкость верхней мантии – 1020-1022 ПаЧс, а нижней - от 1022 до 1026 ПаЧс (паскаль - единица давления, 1 Па = 10 дн/см2).