Также по теме

ГОЛОГРАФИЯ

ГОЛОГРАФИЯ (от греч. холос – полный и графо – пишу) – способ получения объемных изображений предметов на фотопластинке (голограмме) при помощи когерентного (см. КОГЕРЕНТНОСТЬ) излучения лазера. Голограмма фиксирует не само изображение предмета, а структуру отраженной от него световой волны (ее амплитуду и фазу). Для получения голограммы необходимо, чтобы на фотографическую пластинку одновременно попали два когерентных световых пучка: предметный, отраженный от снимаемого объекта, и опорный – приходящий непосредственно от лазера. Свет обоих пучков интерферирует, создавая на пластинке чередование очень узких темных и светлых полос – картину интерференции.

На экспонированной таким образом и проявленной пластинке отсутствует какое-либо изображение, однако его в зашифрованном виде содержит система интерференционных полос, и если голограмму просветить, как диапозитив, лазерным светом той же частоты, что была использована при записи, возникнет «восстановленная голограмма» – объемное изображение снятого предмета, словно висящего в пространстве. Меняя точку наблюдения, можно заглянуть за предметы на первом плане и увидеть детали, ранее скрытые от взгляда, Свет, проходя сквозь систему черно-белых полос голограммы, испытывает дифракцию и воспроизводит волновой фронт, исходивший от снятого предмета (см. КОЛЕБАНИЯ И ВОЛНЫ). Аналогичным образом лазерный луч, пропущенный сквозь отверстие очень малого диаметра, даст на фотопластинке, поставленной за отверстием, систему колец (так называемые «кольца Френеля»). А световой пучок, проходящий сквозь их изображение («зонную пластинку»), сойдется в точку. Кольца Френеля представляют собой простейшую голограмму – голограмму точки.

Голографию изобрел (и придумал название) английский физик Деннис Габор в 1947, исследуя законы построения изображений в оптике и работая над совершенствованием электронного микроскопа. Он пришел к выводу, что зарегистрировать полное изображение предмета можно без объектива, используя только пучок когерентного монохроматичного света. Первые голограммы были получены им при помощи ртутной лампы, из спектра излучения которой «вырезалась» очень узкая полоса частот. Диаметр пучка составлял 1–2 микрона, а время экспозиции – несколько часов. Между источником света и фотопластинкой помещался либо прозрачный объект, либо предмет небольшого размера, так что излучение источника выполняло одновременно функции и предметного, и опорного пучков. Поэтому при восстановлении голограммы возникали сразу два изображения на одной линии, которые создавали взаимные помехи при регистрации. Все это делало невозможным практическое применение голографии, и о ней надолго забыли.

После появления мощного источника когерентного света – лазера интерес к голографии вспыхнул вновь. В 1962 американские оптики и радиофизики Эммет Лейт и Дж. Юрис Упатниекс усовершенствовали схему Габора, разделив предметный и опорный пучки, которые стали теперь пересекаться непосредственно перед фотопластинкой. Это позволило, во-первых, голографировать непрозрачные предметы сложной формы, а во-вторых, разнести восстановленные изображения в пространстве. Схема Лейта – Упатниекса стала основой современных голографических установок.

В это же время на голографические методы записи изображения обратил внимание российский физик Юрий Николаевич Денисюк. Он создал принципиально новый способ записи голограмм в толстом слое фотографической эмульсии. Предметный и опорный пучки приходят к пластинке с разных сторон и интерферируют. В объеме ее эмульсионного слоя на разной высоте в областях максимумов интерференции возникают микроскопические пятна почернения. Падающий на проявленную голограмму свет отражается от них и, интерферируя, формирует восстановленное изображения предмета. При этом из голограммы выходят только свет, частота которого равна частоте записывающего лазерного излучения, а все остальные частоты автоматически подавляются. Объемную голограмму восстанавливают обычным белым светом, получая монохромное изображение.

В своей работе Ю.Денисюк опирался на способ получения цветных фотографических изображений, разработанный французским физиком Габриэлем Липпманом в 1891. Луч света из объектива его фотоаппарата попадал на пластинку, залитую с обратной стороны ртутью (ее слой служил зеркалом). Отраженные световые волны интерферировали с падающими, создавая в толще фотографической эмульсии стоячие волны. В местах их пучностей возникали области почернения – отражающие поверхности, каждая из которых отражала свет только «своего» цвета. Изображение было цветным, но не объемным.

Современная технология позволяет копировать объемные голограммы «по Денисюку» типографским способом. Для этого голограмму получают в особом светочувствительном материале – фоторезисте. После экспонирования материал обрабатывают растворителем, который смывает его слой до зон почернения. Образуется микрорельеф, с которого снимают отпечаток – матрицу. При помощи этой матрицы в пластическом материала печатают копии голографического рельефа, покрывают их слоем металла и прозрачной защитной пленкой. Таким способом изготавливают защитные марки на упаковках пищевых продуктов и документах. Подделать их практически невозможно.

Голографические изображения можно получать при помощи любых когерентных волн, например, акустических, возбужденных в жидкости синхронно работающими вибраторами. Интерференция звуковых волн создает на поверхности жидкости рябь, с которой эту акустическую голограмму восстанавливают лазерным лучом.

Свойства голограмм.

Голографическое изображение отличается от фотографии не только своей объемностью, но и еще несколькими важными свойствами.

1. В любую точку плоской голограммы «по Габору» попадает свет, отраженный от всех точек предмета. Это означает, что любой, самый маленький ее участок содержит зрительную информацию обо всем предмете. Голограмму можно разбить на несколько кусков, и каждый будет полностью воспроизводить первоначальное изображение. Отпечаток голограммы, где черные полосы стали прозрачными и наоборот, дает то же изображение, что исходная голограмма. Ни фотография, ни голограмма «по Денисюку» таким свойством не обладает.

2. Голографическое изображение можно увеличить на стадии восстановления. Когда голограмму записывают параллельным световым пучком, а восстанавливают расходящимся, изображение увеличивается пропорционально углу расхождения (геометрический коэффициент увеличения kг). Если запись ведется излучением длиной волны l1, а восстановление – кратной ему l2 > l1, изображение станет больше в k = l2/l1 раз (волновой коэффициент увеличения kв). Полное увеличение равно произведению обоих коэффициентов; например, для рентгеновского микроскопа (l1 = 10–2 мкм, l2 = 0,5 мкм) с kг = 200 полное увеличение k = 106.

3. Если на одну пластинку записать несколько голограмм, используя разные, но не кратные, длины волн, все они могут быть считаны независимо при помощи лазеров с соответствующим излучением. Таким же образом можно записать и полноцветное изображение.

4. Голограмму можно рассчитать и нарисовать при помощи компьютера и даже вручную. Так, зонную пластинку Френеля нетрудно начертить, получив простейшую голограмму одной точки, но чем сложнее объект, тем более запутанной становится такая искусственная голограмма.

Применение голографии.

Наиболее широкое применение голография находит в науке и технике. Голографическими методами контролируют точность изготовления изделий сложной формы, исследуют их деформации и вибрации. Для этого деталь, подлежащую контролю, облучают светом лазера, и отраженный свет пропускают сквозь голограмму эталонного образца. При отклонении размеров от эталонных, искажении формы и появлении поверхностных напряжений возникают полосы интерференции, число и расположение которых характеризует степень отличия изделия от образца или величину деформаций. Аналогичным образом исследуют обтекание тел потоками жидкости и газа: голограммы позволяют не только увидеть в них вихри и области уплотнений, но и оценить их интенсивность.