Также по теме

КВАНТОВАЯ МЕХАНИКА

КВАНТОВАЯ МЕХАНИКА, фундаментальная физическая теория динамического поведения всех элементарных форм вещества и излучения, а также их взаимодействий. Квантовая механика представляет собой теоретическую основу, на которой строится современная теория атомов, атомных ядер, молекул и физических тел, а также элементарных частиц, из которых все это состоит.

Квантовая механика была создана учеными, стремившимися понять, как устроен атом. Атомные процессы в течение многих лет изучали физики и особенно химики; при изложении данного вопроса мы будем, не вдаваясь в подробности теории, следовать историческому ходу развития предмета.

Зарождение теории.

Когда Э.Резерфорд и Н.Бор предложили в 1911 ядерную модель атома, это было подобно чуду. В самом деле, она была построена из того, что было известно уже более 200 лет. Это была, в сущности, коперниковская модель Солнечной системы, воспроизведенная в микроскопическом масштабе: в центре находится тяжелая масса, вскоре получившая название ядра, вокруг которой вращаются электроны, числом которых определяются химические свойства атома. Но мало того, за этой наглядной моделью стояла теория, которая позволила начать расчеты некоторых химических и физических свойств веществ, по крайней мере построенных из наименьших и наиболее простых атомов. Теория Бора – Резерфорда содержала ряд положений, которые здесь полезно напомнить, поскольку все они в том или ином виде сохранились и в современной теории.

Во-первых, важен вопрос о природе сил, связывающих атом. С 18 в. было известно, что электрически заряженные тела притягивают или отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними. Используя в качестве пробных тел альфа-частицы, возникающие в результате радиоактивных превращений, Резерфорд показал, что тот же самый закон электрического взаимодействия (закон Кулона) справедлив в масштабах, в миллион миллионов раз меньших тех, для которых он был первоначально экспериментально установлен.

Во-вторых, нужно было ответить на вопрос о том, как электроны движутся по орбитам под действием этих сил. Здесь вновь опыты Резерфорда, казалось бы, показывали (и Бор принял это в своей теории), что законы движения Ньютона, сформулированные в его Началах (Principia Mathematica, 1687), можно использовать для описания движения частиц в этих новых масштабах микромира.

В-третьих, вставал вопрос о стабильности. В ньютоновско-кулоновском атоме, как и в Солнечной системе, размеры орбит произвольны и зависят лишь от того, каким образом система была первоначально приведена в движение. Однако все атомы одного вещества одинаковы и к тому же стабильны, что совсем необъяснимо с точки зрения старых представлений. Бор высказал предположение, что атомные электроны следует рассматривать как движущиеся вокруг ядра лишь по определенным орбитам, которым отвечают определенные энергетические уровни, причем они должны испускать квант энергии в виде света, переходя с орбиты с более высокой энергией на орбиту с меньшей энергией. Такие «условия квантования» не вытекали ни из каких экспериментальных данных или теорий; они были приняты как постулаты.

На основе этих концептуальных элементов, дополненных только что развитыми в то время представлениями М.Планка и А.Эйнштейна о природе света, Бору удалось количественно объяснить весь спектр излучения атомов водорода в газоразрядной трубке и дать качественное объяснение всех основных закономерностей периодической системы элементов. К 1920 пришло время взяться за проблему спектра излучения более тяжелых атомов и вычислить интенсивность химических сил, связывающих атомы в соединениях.

Но здесь иллюзия успеха померкла. На протяжении ряда лет Бор и другие исследователи безуспешно пытались рассчитать спектр гелия – следующего за водородом простейшего атома с двумя электронами. Сначала вообще ничего не получалось; в конце концов несколько исследователей различными способами решили эту задачу, но ответ оказался неверным – он противоречил эксперименту. Затем выяснилось, что вообще невозможно построить сколько-нибудь приемлемую теорию химического взаимодействия. К началу 1920-х годов теория Бора исчерпала себя. Пришло время признать справедливость пророческого замечания, которое Бор еще в 1914 сделал в письме другу в присущем ему замысловатом стиле: «Я склонен полагать, что проблема связана с исключительно большими трудностями, которые можно будет преодолеть, лишь гораздо дальше отойдя от обычных соображений, чем требовалось до сих пор, и что достигнутый ранее успех был обусловлен исключительно простотой рассматривавшихся систем».

Первые шаги.

Поскольку использованная Бором комбинация существовавших ранее представлений из области электричества и механики с условиями квантования привела к неверным результатам, все это нужно было полностью или частично изменить. Основные положения теории Бора были приведены выше, а для соответствующих расчетов было достаточно не очень сложных выкладок с использованием обычной алгебры и математического анализа. В 1925 молодой немецкий физик В.Гейзенберг посетил Бора в Копенгагене, где провел с ним долгие часы в беседах, выясняя, что из теории Бора обязательно должно войти в будущую теорию, а от чего в принципе можно и отказаться.

Бор и Гейзенберг сразу же согласились, что в будущей теории обязательно должно быть представлено все непосредственно наблюдаемое, а все не поддающееся наблюдению может быть изменено или исключено из рассмотрения. С самого начала Гейзенберг считал, что следует сохранить атомы, но орбиту электрона в атоме считать абстрактной идеей, поскольку ни один эксперимент не позволяет определить электронную орбиту по результатам измерений наподобие того, как это можно сделать для орбит планет. Читатель может заметить, что тут есть определенная нелогичность: строго говоря, атом столь же ненаблюдаем непосредственно, как и электронные орбиты, и вообще в нашем восприятии окружающего мира нет ни одного ощущения, которое не требовало бы разъяснения. В наши дни физики все чаще цитируют известный афоризм, который был впервые произнесен Эйнштейном в беседе с Гейзенбергом: «Что именно мы наблюдаем, нам говорит теория». Таким образом, различие между наблюдаемыми и ненаблюдаемыми величинами носит чисто практический характер, не имея никакого обоснования ни в строгой логике, ни в психологии, причем это различие, как бы оно ни проводилось, должно рассматриваться как часть самой теории.

Поэтому гейзенберговский идеал теории, очищенной от всего ненаблюдаемого, есть некое направление мысли, но отнюдь не последовательный научный подход. Тем не менее он доминировал в атомной теории почти полвека после того, как был впервые сформулирован. Мы уже напоминали о составных элементах ранней модели Бора, таких, как закон Кулона для электрических сил, законы динамики Ньютона и обычные правила алгебры. Путем тонкого анализа Гейзенберг показал, что можно сохранить известные законы электричества и динамики, если найти надлежащее выражение для динамики Ньютона, а затем изменить правила алгебры. В частности, Гейзенберг высказал мысль, что, поскольку ни положение q, ни импульс p электрона не являются измеримыми величинами в том смысле, в каком ими являются, например, положение и импульс автомобиля, мы можем при желании сохранить их в теории, лишь рассматривая как математические символы, обозначаемые буквами, но не как числа. Он принял для p и q алгебраические правила, согласно которым произведение pq не совпадает с произведением qp. Гейзенберг показал, что простые расчеты атомных систем дают приемлемые результаты, если принять, что для положения q и импульса p выполняется соотношение