Также по теме

ОРБИТА

ОРБИТА, в астрономии, – путь небесного тела в пространстве. Хотя орбитой можно называть траекторию любого тела, обычно имеют в виду относительное движение взаимодействующих между собой тел: например, орбиты планет вокруг Солнца, спутников вокруг планеты или звезд в сложной звездной системе относительно общего центра масс. Искусственный спутник «выходит на орбиту», когда начинает двигаться по циклической траектории вокруг Земли или Солнца. Термин «орбита» используется также в атомной физике при описании электронных конфигураций. См. также АТОМ.

Абсолютные и относительные орбиты.

Абсолютной орбитой называют путь тела в системе отсчета, которую в каком-то смысле можно считать универсальной и потому абсолютной. Такой системой считают Вселенную в большом масштабе, взятую как целое, и называют ее «инерциальной системой». Относительной орбитой называют путь тела в такой системе отсчета, которая сама движется по абсолютной орбите (по искривленной траектории с переменной скоростью). Например, у орбиты искусственного спутника обычно указывают размер, форму и ориентацию относительно Земли. В первом приближении это эллипс, в фокусе которого находится Земля, а плоскость неподвижна относительно звезд. Очевидно, это относительная орбита, поскольку она определена по отношению к Земле, которая сама движется вокруг Солнца. Удаленный наблюдатель скажет, что спутник движется относительно звезд по сложной винтовой траектории; это его абсолютная орбита. Ясно, что форма орбиты зависит от движения системы отсчета наблюдателя.

Необходимость различать абсолютную и относительную орбиты возникает потому, что законы Ньютона верны только в инерциальной системе отсчета, поэтому их можно использовать только для абсолютных орбит. Однако мы всегда имеем дело с относительными орбитами небесных тел, ибо наблюдаем их движение с обращающейся вокруг Солнца и вращающейся Земли. Но если абсолютная орбита земного наблюдателя известна, то можно либо перевести все относительные орбиты в абсолютные, либо представить законы Ньютона уравнениями, верными в системе отсчета Земли.

Абсолютную и относительную орбиты можно проиллюстрировать на примере двойной звезды. Например, Сириус, кажущийся невооруженному глазу одиночной звездой, при наблюдении с большим телескопом оказывается парой звезд. Путь каждой из них можно проследить отдельно по отношению к соседним звездам (принимая во внимание, что и сами они движутся). Наблюдения показали, что две звезды не только обращаются одна вокруг другой, но и перемещаются в пространстве так, что между ними всегда есть точка, движущаяся по прямой линии с постоянной скоростью (рис. 1). Эту точку называют центром масс системы. Практически с ней связана инерциальная система отсчета, а траектории звезд относительно нее представляют их абсолютные орбиты. Чем дальше отходит звезда от центра масс, тем она легче. Знание абсолютных орбит позволило астрономам вычислить по отдельности массы Сириуса А и Сириуса В.

      Рис. 1. АБСОЛЮТНАЯ ОРБИТА Сириуса А и Сириуса В по наблюдениям за 100 лет. Центр масс этой двойной звезды движется по прямой линии в инерциальной системе отсчета; поэтому траектории обеих звезд в этой системе являются их абсолютными орбитами.

Если же измерять положение Сириуса В относительно Сириуса А, то получим относительную орбиту (рис. 2). Расстояние между этими двумя звездами всегда равно сумме их расстояний от центра масс, поэтому относительная орбита имеет ту же форму, что и абсолютные, а по размеру равна их сумме. Зная размер относительной орбиты и период обращения, можно, используя третий закон Кеплера, вычислить лишь суммарную массу звезд. См. также НЕБЕСНАЯ МЕХАНИКА.

      Рис. 2. СТОРОННИЙ НАБЛЮДАТЕЛЬ может видеть абсолютные орбиты Сириуса А и В, обращающихся вокруг центра их масс (слева). Наблюдатель, связанный с главным компонентом системы (Сириус А) видит относительную орбиту Сириуса В (справа).

Более сложный пример представляет движение Земли, Луны и Солнца. Каждое из этих тел движется по своей абсолютной орбите относительно общего центра масс. Но поскольку Солнце значительно превосходит всех по массе, принято изображать Луну и Землю в виде пары, центр масс которой движется по относительной эллиптической орбите вокруг Солнца. Однако эта относительная орбита весьма близка к абсолютной. См. также ЛУНА.

Движение Земли относительно центра масс системы Земля – Луна наиболее точно измеряется с помощью радиотелескопов, определяющих расстояние до межпланетных станций. В 1971 при полете аппарата «Маринер-9» к Марсу по периодическим вариациям расстояния до него определили амплитуду движения Земли с точностью 20–30 м. Центр масс системы Земля – Луна лежит внутри Земли, на 1700 км ниже ее поверхности, а отношение масс Земли и Луны составляет 81,3007. Зная их суммарную массу, найденную по параметрам относительной орбиты, можно легко найти и массу каждого из тел.

Говоря об относительном движении, мы можем произвольно выбирать точку отсчета: относительная орбита Земли вокруг Солнца в точности такова, как относительная орбита Солнца вокруг Земли. Проекцию этой орбиты на небесную сферу называют «эклиптикой». В течение года Солнце передвигается по эклиптике приблизительно на 1° в сутки, а если смотреть от Солнца, то так же точно движется Земля. Плоскость эклиптики наклонена к плоскости небесного экватора на 23°27ў, т.е. таков угол между земным экватором и ее орбитальной плоскостью. Все орбиты в Солнечной системе указывают относительно плоскости эклиптики.

Орбиты Луны и планет.

На примере Луны покажем, как описывается орбита (рис. 3). Это относительная орбита, плоскость которой наклонена примерно на 5° к эклиптике. Этот угол называют «наклонением» лунной орбиты. Плоскость лунной орбиты пересекает эклиптику по «линии узлов». Тот из них, где Луна проходит с юга на север, называют «восходящим узлом», а другой – «нисходящим».

      Рис. 3. ОРБИТА ЛУНЫ. Для определения орбиты объекта в Солнечной системе необходимо вычислить такие ее элементы, как наклонение плоскости орбиты к плоскости эклиптики, положение линии апсид и линии узлов, значения перигелия и афелия (или перигея и апогея для околоземной орбиты).