Также по теме

УСКОРИТЕЛЬ ЧАСТИЦ

УСКОРИТЕЛЬ ЧАСТИЦ, установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию. В процессе ускорения повышаются скорости частиц, причем нередко до значений, близких к скорости света. В настоящее время многочисленные малые ускорители применяются в медицине (радиационная терапия), а также в промышленности (например, для ионной имплантации в полупроводниках). Крупные же ускорители применяются главным образом в научных целях – для исследования субъядерных процессов и свойств элементарных частиц.

Согласно квантовой механике, пучок частиц, как и световой пучок, характеризуется определенной длиной волны. Чем больше энергия частиц, тем меньше эта длина волны. А чем меньше длина волны, тем меньше объекты, которые можно исследовать, но тем больше размеры ускорителей и тем они сложнее. Развитие исследований микромира требовало все большей энергии зондирующего пучка. Первыми источниками излучений высокой энергии служили природные радиоактивные вещества. Но они давали исследователям лишь ограниченный набор частиц, интенсивностей и энергий. В 1930-х годах ученые начали работать над созданием установок, которые могли бы давать более разнообразные пучки. В настоящее время существуют ускорители, позволяющие получать любые виды излучений с высокой энергией. Если, например, требуется рентгеновское или гамма-излучение, то ускорению подвергаются электроны, которые затем испускают фотоны в процессах тормозного или синхротронного излучения. Нейтроны генерируются при бомбардировке подходящей мишени интенсивным пучком протонов или дейтронов.

Энергия ядерных частиц измеряется в электронвольтах (эВ). Электронвольт – это энергия, которую приобретает заряженная частица, несущая один элементарный заряд (заряд электрона), при перемещении в электрическом поле между двумя точками с разностью потенциалов в 1 В. (1 эВ » 1,60219Ч10–19 Дж.) Ускорители позволяют получать энергии в диапазоне от тысяч до нескольких триллионов (1012) электронвольт – на крупнейшем в мире ускорителе.

Для обнаружения в эксперименте редких процессов необходимо повышать отношение сигнала к шуму. Для этого требуются все более интенсивные источники излучения. Передний край современной техники ускорителей определяется двумя основными параметрами – энергией и интенсивностью пучка частиц.

В современных ускорителях используются многочисленные и разнообразные виды техники: высокочастотные генераторы, быстродействующая электроника и системы автоматического регулирования, сложные приборы диагностики и управления, сверхвысоковакуумная аппаратура, мощные прецизионные магниты (как «обычные», так и криогенные) и сложные системы юстировки и крепления.

ОСНОВНЫЕ ПРИНЦИПЫ

Основная схема ускорения частиц предусматривает три стадии: 1) формирование пучка и его инжекция, 2) ускорение пучка и 3) вывод пучка на мишень или осуществление соударения встречных пучков в самом ускорителе.

Формирование пучка и его инжекция.

Исходным элементом любого ускорителя служит инжектор, в котором имеется источник направленного потока частиц с низкой энергией (электронов, протонов или других ионов) и высоковольтные электроды и магниты, выводящие пучок из источника и формирующие его. В источниках протонов первых ускорителей газообразный водород пропускался через область электрического разряда или вблизи раскаленной нити. В таких условиях атомы водорода теряют свои электроны и остаются одни ядра – протоны. Такой метод (и аналогичный с другими газами) в усовершенствованном виде по-прежнему применяется для получения пучков протонов (и тяжелых ионов).

Источник формирует пучок частиц, который характеризуется средней начальной энергией, током пучка, его поперечными размерами и средней угловой расходимостью. Показателем качества инжектируемого пучка служит его эмиттанс, т.е. произведение радиуса пучка на его угловую расходимость. Чем меньше эмиттанс, тем выше качество конечного пучка частиц с высокой энергией. По аналогии с оптикой ток частиц, деленный на эмиттанс (что соответствует плотности частиц, деленной на угловую расходимость), называют яркостью пучка. Во многих приложениях современных ускорителей требуется максимально возможная яркость пучков.

Ускорение пучка.

Пучок формируется в камерах или инжектируется в одну или несколько камер ускорителя, в которых электрическое поле повышает скорость, а следовательно, и энергию частиц. В первых, простейших ускорителях энергия частиц увеличивалась в сильном электростатическом поле, созданном внутри высоковакуумной камеры. Максимальная энергия, которую при этом удавалось достичь, определялась электрической прочностью изоляторов ускорителя. Во многих современных ускорителях в качестве инжекторов еще используются электростатические ускорители электронов и ионов (вплоть до ионов урана) с энергиями от 30 кэВ до 1 МэВ.

Получение высокого напряжения и сегодня остается сложной технической проблемой. Его можно получать, заряжая группу конденсаторов, соединенных параллельно, а затем подключая их последовательно к последовательности ускорительных трубок. Таким способом в 1932 Дж.Кокрофт и Э.Уолтон получали напряжения до 1 МВ. Существенный практический недостаток этого способа в том, что на внешних элементах системы оказывается высокое напряжение, опасное для экспериментаторов.

Иной способ получения высокого напряжения был изобретен в 1931 Р.Ван-де-Граафом. В генераторе Ван-де-Граафа (рис. 1) лента из диэлектрика переносит электрические заряды от источника напряжения, находящегося под потенциалом земли, к высоковольтному электроду, повышая тем самым его потенциал относительно земли. Однокаскадный генератор Ван-де-Граафа позволяет получать напряжения до 10 МВ. На многокаскадных высоковольтных ускорителях были получены протоны с энергиями до 30 МэВ.

      Рис. 1. ГЕНЕРАТОР ВАН-ДЕ-ГРААФА можно превратить в ускоритель, добавив вакуумную трубку. Заряженные частицы из источника, находящегося внутри сферического высоковольтного электрода, вводятся в трубку и ускоряются в направлении мишени. 1 – кожух; 2 – резиновая лента; 3 – источник частиц; 4 – высоковольтный электрод; 5 – вакуумная трубка; 6 – мишень.

Если требуется не непрерывный пучок, а короткий импульс частиц с высокой энергией, то можно воспользоваться тем, что кратковременно (менее микросекунды) изоляторы способны выдерживать гораздо более высокие напряжения. Импульсные диоды позволяют получать напряжения до 15 МВ на каскад в схемах с очень низким импендансом. Это позволяет получить токи пучка в несколько десятков килоампер, а не в десятки миллиампер, как на электростатических ускорителях.

Обычный способ получения высокого напряжения основан на схеме импульсного генератора Маркса, в которой батарея конденсаторов сначала заряжается параллельно, а затем соединяется последовательно и разряжается через один разрядный промежуток. Высоковольтный импульс генератора поступает в длинную линию, которая формирует импульс, задавая его время нарастания. Линия нагружается электродами, ускоряющими пучок.