Содержание статьи
    Также по теме

    ГИДРАТАЦИЯ. ГИДРАТЫ. ГИДРОЛИЗ

    ГИДРАТАЦИЯ. ГИДРАТЫ. ГИДРОЛИЗ. Гидратация (греч. «хюдор» – вода) – присоединение воды к ионам, атомам или молекулам. Продукты такого процесса называются гидратами. Гидролиз (греч. «лисис» – разложение, растворение) – химическая реакция разложения вещества водой.

    В течение многих лет химики считали растворение веществ в воде чисто физическим процессом. И сейчас в школьных учебниках к таковым относят, например, растворение в воде сахара. Действительно, при испарении воды из раствора сахара при пониженном давлении легко получить исходное вещество в неизменном виде.

    В то же время накапливались данные о том, что процесс растворения нельзя считать чисто механическим смешением компонентов, как, например, гексана и гептана. Так, растворы хлорида натрия и многих других соединений обладают электропроводностью, а сам процесс растворения нередко сопровождается значительными тепловыми эффектами (см. ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ). Более того, некоторые соединения при растворении изменяют даже цвет. Например, сульфат меди бесцветный, а его разбавленный раствор – голубой, хлорид кобальта(II) голубой, а его водные растворы розовые. Все эти факты показывают, что растворение в воде – физико-химический процесс, вызванный гидратацией, то есть взаимодействием вещества с водой.

    В ходе гидратации в ряде случаев происходит обратимое присоединение воды к ионам, атомам или молекулам растворяемого вещества с образованием гидратов. Так, при растворении в воде кристаллических ионных соединений (солей, щелочей, а также некоторых кислот, например, лимонной и щавелевой), молекулярных соединений (хлороводорода, серной кислоты, спирта, глюкозы и др.) происходит гидратация катионов и анионов, из которых состоит растворяемое вещество, либо гидратация ионов, образующихся в процессе растворения. При этом молекулы воды сохраняются как целое.

    В процессе гидратации ионов участвует множество молекул воды, которые, благодаря электростатическим силам, окружают ионы со всех сторон гидратной «шубой», при этом лишь несколько молекул воды образуют первый, наиболее прочно связанный с центральным ионом слой. В целом же при гидратации ионов выделяется значительная энергия, так, при гидратации катионов Н+ выделяется 1076 кДж/моль – это в 2,5 раза больше энергии диссоциации молекул Н2 на атомы. Энергия гидратации тем больше, чем меньше размер иона и чем больше его заряд. Например, энергия гидратации большого по размерам иона Cs+ в 4 раза меньше, чем для иона Н+. Энергию гидратации ионов трудно определить экспериментально, но можно рассчитать на основании электростатических моделей. Энергии гидратации некоторых ионов приведены в таблице.

    Ион Энергия гидратации, кДж/моль Ион Энергия гидратации, кДж/моль
    H+ 1076 Sr2+ 1477
    H3O+ 460 Ba2+ 1339
    Li+ 502 Zn2+ 2130
    Na+ 410 Al3+ 4548
    K+ 329 F 473
    NH4+ 330 Cl 330
    Rb+ 314 Br 296
    Cs+ 264 I 264
    Mg2+ 1887 OH 339
    Ca2+ 1569 MnO4 247

    Алгебраическая сумма энергии кристаллической решетки (или энергии разрыва связей) растворяемого вещества и энергии гидратации ионов определяет суммарный тепловой эффект растворения. В случае ионных соединений процесс может быть существенно экзотермическим (растворение в воде серной кислоты, гидроксидов натрия и калия может вызвать даже вскипание раствора), существенно эндотермическим (стакан с водой, в котором быстро растворяют нитрат аммония, примерзает к влажной подставке) или термонейтральным (растворение бромида натрия практически не сопровождается изменением температуры).

    Гидратация многих безводных солей дозированным количеством воды (например, из газовой фазы) приводит к образованию твердых гидратов определенного состава, которые называются кристаллогидратами. Этот процесс всегда сопровождается выделением теплоты. Гидратация может быть ступенчатой, в зависимости от количества доступной воды и температуры. Одновременно может изменяться и цвет ионов. Например, при гидратации бесцветного сульфата меди(II) последовательно образуются различные окрашенные кристаллогидраты, из которых выделены в чистом виде моногидрат CuSO4·H2O, тригидрат CuSO4·3H2O и пентагидрат (медный купорос) CuSO4·5H2O. В разбавленных растворах присутствуют cине-зеленые гидраты – аква-ионы Cu(OH)62+. Потеря воды розовым аква-ионом Со(Н2О)42+ приводит к появлению синей окраски.

    При кристаллизации многих солей из их водных растворов молекулы воды входят в состав кристаллической решетки с образованием кристаллогидратов различного состава, например, LiCl·H2O, CuCl2·2H2O, Ba(ClO4)2·3H2O, CdBr2·4H2O, Na2S2O3·5H2O, AlCl3·6H2O, FeSO4·7H2O, MgI2·8H2O, Fe(NO3)3·9H2O, Na2SO4·10H2O, Na2HPO4·12H2O, Al2(SO4)3·18H2O и др. При нагревании, а также при хранении на воздухе (особенно при низкой влажности) многие кристаллогидраты выветриваются, теряя частично или полностью молекулы воды.

    Гидратация молекулярных соединений происходит обычно за счет водородных связей и, как правило, не сопровождается существенным тепловым эффектом. Примером может служить растворение сахара. Молекулы воды легко образуют водородные связи с гидроксильными группами, поэтому даже вещества с большими молекулами хорошо растворяются в воде, если содержат много гидроксильных групп (сахароза, поливиниловый спирт). Соединения с небольшими полярными молекулами также легко гидратируются полярными молекулами воды, поэтому такие соединения обычно хорошо растворяются в воде. Примером может служить ацетонитрил СН3CN, который смешивается с водой в любых отношениях.