Содержание статьи
    Также по теме

    СВОБОДНЫЕ РАДИКАЛЫ

    СВОБОДНЫЕ РАДИКАЛЫ – частицы с неспаренными электронами на внешних атомных или молекулярных орбиталях. Парамагнитны, как правило, обладают высокой реакционной способностью и потому существуют весьма непродолжительное время. Являются промежуточными веществами во многих реакциях.

    В 1826 состоялась встреча двух выдающихся немецких химиков – Юстуса Либиха и Фридриха Вёлера. Знакомство переросло в дружбу, оказавшуюся весьма плодотворной для развития химии. У молодых ученых возникло желание предпринять совместное исследование, и для этой цели они выбрали бензойную кислоту и масло горького миндаля (в нем содержится бензальдегид). Эта работа имела большое значение, так в как в ней отчетливо выявилось понятие химического радикала. Этот термин происходит от латинского radix – корень; его употреблял еще Лавуазье для обозначения неорганических простых или сложных «кислотообразующих тел» неясной природы. Но распространение термин «радикал» получил только в органической химии.

    Как показали Либих и Вёлер, во многих соединениях, родственных бензойной кислоте, имеется группа связанных друг с другом атомов, которая остается неизменной в ряде различных химических превращений. Такие группы назвали радикалами; в данном случае это был бензоил С6Н5СО. Такое определение радикала с воодушевлением принял самый авторитетный химик того времени Йёнс Якоб Берцелиус, а сам Либих в 1843 назвал органическую химию «химией сложных радикалов». Фактически радикалы в органических реакциях играли роль атомов, переходя без изменений из одних органических соединений в другие, как это происходит с атомами в реакциях неорганических соединений. Берцелиус даже предложил обозначать радикалы как атомы, например, бензоил знаком Bz.

    После бензоила были выявлены другие радикалы – этил С2Н5, метил СН3 и т.д. Была построена сложная система – теория радикалов, которая рассматривала органические соединения как оксиды, гидраты, соли – подобно соединениям неорганическим. Эта теория, однако, противоречила многим фактам и потому со временем была оставлена, однако понятие радикала как весьма полезное в химии осталось. До сих пор химики обозначают многие часто встречающиеся радикалы в соответствии с предложением Берцелиуса, например, метил (Ме), этил (Et), пропил (Pr), бутил (Bu), амил (Am), ацетил (Ас), алкил (Alk), арил (Ar), циклопентадиенил (Ср), фенил (Ph), толилсульфонил (тозил, Ts), трет-бутилоксикарбонил (Вос) и многие другие. Это помогает экономить место при записи (например, Ac2O вместо (СН3СО)2О для уксусного ангидрида или Ph3N вместо (C6H5)3N для трифениламина). Понятие радикала в основном используется в химии органических соединений; из неорганических радикалов наиболее известны аммоний NH4, циан CN, висмутил BiO, уранил UO2 и некоторые другие.

    Еще в 1840 Берцелиус пророчески говорил: «Когда-нибудь случай поможет восстановить и изолировать многие сложные радикалы». Ряд химиков, в числе которых были Эдуард Франкланд и Герман Кольбе, пытались выделить в свободном состоянии некоторые органические радикалы – метил, этил, амил. Однако любые такие попытки терпели неудачу. Поэтому мало кто верил, что радикалы действительно могут быть «свободными», т.е. существовать сами по себе, а не в составе молекулы. Традицию нарушил молодой американский химик Мозес Гомберг – основатель химии свободных радикалов, причем его открытие, в полном соответствии с предсказанием Берцелиуса, действительно было сделано случайно.

    Гомберг родился в 1866 в украинском городе Елисаветграде (ныне Кировоград), после переезда в США окончил Мичиганский университет, затем в течение двух лет стажировался в Германии. Вернувшись в Мичиганский университет, профессором которого он стал через несколько лет, Гомберг впервые получил тетрафенилметан – производное метана, в котором все атомы водорода заменены бензольными кольцами. Затем он попытался синтезировать аналогичное производное этана – гексафенилэтан (С6Н5)3С–С(С6Н5)3, в котором фенильными группами замещены все шесть атомов водорода. С этой целью Гомберг подействовал на трифенилхлорметан С(С6Н5)3Сl цинком, медью, ртутью или серебром. Он хорошо знал, что в подобных реакциях, аналогичных реакции Вюрца, атомы металла отрывают атомы хлора от молекул хлорированных углеводородов, а оставшиеся осколки (радикалы) тут же рекомбинируют – соединяются между собой. Например, в случае хлорбутана получается октан: 2С4H9Cl + 2Na ® C8H18 + 2NaCl. Было логично предположить, что из трифенилхлорметана получится гексафенилэтан. И тут его ждал сюрприз.

    Гомберг провел реакцию, выделил продукт и проанализировал его. К его удивлению, в нем, кроме углерода и водорода был также кислород. Источник кислорода был очевиден – воздух, однако было совершенно неясно, как кислород оказался участником реакции. Гомберг повторил опыт, тщательно оберегая реакционную смесь от воздуха. Результат был удивительным. Во-первых раствор оказался желтым, а на воздухе быстро обесцвечивался. Как правило, появление окраски свидетельствует об изменении строения образующегося соединения. Во-вторых, выделенный в инертной атмосфере продукт по составу оказался таким же, как гексафенилэтан, но по свойствам разительно отличался от него: даже в холодном растворе быстро реагировал с кислородом, бромом и йодом. Гексафенилэтан в такие реакции вступать никак не мог.

    Гомберг сделал смелое предположение: после отрыва серебром атома хлора от трифенилхлорметана образуется свободный радикал – трифенилметил (С6Н5)3С·. Неспаренный электрон делает его весьма активным по отношению к галогенам и к кислороду. Реакция с йодом дает трифенилиодметан: 2(С6Н5)3С· + I2 ® 2(С6Н5)3СI, а с кислородом образуется трифенилметилпероксид: 2(С6Н5)3С· + О2 ® (С6Н5)3С–О–О–С(С6Н5)3. В отсутствие же подходящих реагентов (в инертной атмосфере) эти радикалы могут реагировать друг с другом – сдваиваться с образованием димерной молекулы гексафенилэтана (С6Н5)3С–С(С6Н5)3. Гомберг предположил, что эта реакция обратима: молекулы гексафенилэтана частично распадаются на трифенилметильные радикалы. На это указывало и измерение молекулярной массы соединения (см. МОЛЕКУЛЯРНОЙ МАССЫ ОПРЕДЕЛЕНИЕ), которая оказалась больше, чем у трифенилметана, но меньше, чем у его димера – гексафенилэтана. Впоследствии было выяснено, что в растворе бензола при комнатной температуре и концентрации димера 0,1 моль/л димер диссоциирует всего на 2–3%. Но если радикалы выводятся из реакции (например, реагируя с кислородом), то равновесие тут же сдвигается в сторону диссоциации димера, пока он полностью не исчезнет. Степень диссоциации значительно увеличивается при введении в бензольные кольца заместителей. Так, в случае трех нитрогрупп в пара-положениях диссоциация идет на 100%, и радикал можно даже получить в кристаллическом состоянии.

    В 1900 Гомберг по результатам своих исследований опубликовал в Журнале Американского химического общества статью с необычным для того времени названием Трифенилметил, случай трехвалентного углерода. Еще более необычной была концовка этой статьи: она даже попала в книгу Мировые рекорды в химии. Без ложной скромности автор написал: «Эта работа будет продолжена, и я желаю оставить за собой данное направление исследований».