Содержание статьи
Также по теме

ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ

ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ – плотность вероятности распределения частиц макроскопической системы по координатам, импульсам или квантовым состояниям. Функция распределения является основной характеристикой самых разнообразных (не только физических) систем, которым свойственно случайное поведение, т.е. случайное изменение состояния системы и, соответственно, ее параметров. Даже в стационарных внешних условиях само состояние системы может быть таким, что результат измерения некоторого его параметра является случайной величиной. Функция распределения в подавляющем большинстве случаев содержит в себе всю возможную и потому исчерпывающую информацию о свойствах таких систем.

В математической теории вероятностей и математической статистике функция распределения и плотность вероятности отличаются друг от друга, но однозначно связаны между собой. Ниже речь пойдет почти исключительно о плотности вероятности, которую (согласно принятой в физике давней традиции) называют плотностью распределения вероятности или функцией распределения, ставя знак равенства между этими двумя терминами.

Случайное поведение в той или иной мере характерно для всех квантовомеханических систем: элементарные частицы, атомы молекулы и т.п. Однако случайное поведение – это не специфическая черта только квантовомеханических систем, многие чисто классические системы обладают этим свойством.

Примеры.

При бросании монеты на твердую горизонтальную поверхность, неясно, как она ляжет: цифрой вверх или гербом. Известно, что вероятности этих событий, при определенных условиях, равны 1/2. При бросании игральной кости нельзя с уверенностью сказать, какая из шести цифр окажется на верхней грани. Вероятность выпадения каждой из цифр при определенных предположениях (кость – однородный куб без сколотых ребер и вершин падает на твердую, гладкую горизонтальную поверхность) равна 1/6.

Хаотичность движения молекул в наибольшей степени проявляется в газе. Даже в стационарных внешних условиях, флуктуируют (меняются случайным образом) точные значения макроскопических параметров, и только их средние значения при этом постоянны. Описание макроскопических систем на языке средних значений макропараметров и составляет суть термодинамического описания (см. статью ТЕРМОДИНАМИКА).

Пусть есть идеальный одноатомный газ и три его (еще не усредненных) макроскопических параметра: N – число атомов, движущихся внутри сосуда, занятого газом; P –давление газа на стенку сосуда и – внутренняя энергия газа. Газ идеальный и одноатомный, поэтому его внутренняя энергия есть просто сумма кинетических энергий поступательного движения атомов газа.

Число N флуктуирует, по крайней мере, из-за процесса сорбции (прилипания к стенке сосуда при соударении с ней) и десорбции (процесса отлипания, когда молекула отрывается от стенки сама по себе или в результате удара по ней другой молекулы), наконец, процесса образования кластеров – короткоживущих комплексов из нескольких молекул. Если бы Можно было измерять N мгновенно и точно, то полученная зависимость N(t) была бы похожей на изображенную на рисунке.

Размах флуктуаций на рисунке для наглядности сильно завышен, но при небольшом среднем значении (бN с ~ 102) числа частиц в газе он примерно таким и будет.

Если выбрать маленькую площадку на стенке сосуда измерять силу, действующую на эту площадку в результате ударов молекул газа, находящегося в сосуде, то отношение среднего значения нормальной к площадке компоненты этой силы к площади площадки и принято называть давлением. В разные моменты времени к площадке будет подлетать разное количество молекул, причем с разными скоростями. В результате, если бы можно было измерять эту силу мгновенно и точно, была бы картина, подобная изображенной на рисунке, нужно только изменить обозначения по вертикальной оси:

N(t) Ю P(t) и бN(t)с Ю бP(t)с.

Практически все то же справедливо и для внутренней энергии газа, только процессы, приводящие к случайным изменениям данной суммы другие. Например, подлетая к стенке сосуда, молекула газа сталкивается не с абстрактной абсолютно упруго и зеркально отражающей стенкой, а с одной из частиц, составляющих материал этой стенки. Пусть стенка стальная, тогда это ионы железа, колеблющиеся около положений равновесия – узлов кристаллической решетки. Если молекула газа подлетает к стенке на той фазе колебаний иона, когда он движется ей навстречу, то в результате соударения молекула отлетит от стенки со скоростью большей чем подлетала. Вместе с энергией этой молекулы увеличится и внутренняя энергия газа E. Если молекула сталкивается с ионом, движущемся в том же направлении, что и она, то отлетит эта молекула со скоростью меньшей, чем та, с которой она полетала. Наконец, молекула может попасть в междуузелье (пустое место между соседними узлами кристаллической решетки) и застрять там, так, что даже сильным нагревом ее не извлечь оттуда. В последних двух случаях внутренняя энергия газа E уменьшится. Следовательно, E(t) – также случайная функция времени и – среднее значение этой функции.

Броуновское движение.

Определив положение броуновской частицы в некоторый момент времени t1, можно точно предсказать только то, что ее положение в последующий момент времени t2 не превышает (t2 – t1)·c, где c – скорость света в вакууме.

Различают случаи дискретного и непрерывного спектра состояний и, соответственно, переменной x. Под спектром значений некоторой переменной понимается вся совокупность возможных ее значений.

В случае дискретного спектра состояний для задания распределения вероятностей нужно, во-первых, указать полный набор возможных значений случайной переменной

x1, x2, x3,… xk,… (1)

и, во-вторых, их вероятности:

W1, W2, W3,… Wk,… (2)

Сумма вероятностей всех возможных событий должна быть равна единице (условие нормировки)

(3)

Описание распределения вероятностей соотношениями (1) – (3) невозможно в случае непрерывного спектра состояний и, соответственно, непрерывного спектра возможных значений переменной x. Пусть x принимает все возможные действительные значения в интервале

x О [a, b] (4)

где a и b необязательно конечны. Например, для модуля вектора скорости молекулы газа V О [0, Ґ), а для проекции вектора скорости на направление, скажем, оси OZ: Vz О (–Ґ, +Ґ)1 (рассматривается случай нерелятивистской теории, когда скорости частиц не ограничены сверху скоростью движения света в вакууме С).

Пусть есть событие (результат измерения x) – значение переменной x принадлежит интервалу [x, x + Dx], лежащему внутри всего интервала возможных значений, т.е. x О [x, x + Dx] О [a, b] (5)

Тогда вероятность DW(x, Dx) попадания x в интервал (5) равна

(6)

Здесь N – полное число измерений x, а Dn(x, Dx) – число результатов, попавших в интервал (5).