Также по теме

ФУНКЦИЙ ТЕОРИЯ

ФУНКЦИЙ ТЕОРИЯ, раздел математики, занимающийся изучением свойств различных функций. Теория функций распадается на две области: теорию функций действительного переменного и теорию функций комплексного переменного, различие между которыми настолько велико, что обычно их рассматривают порознь. Не вдаваясь в детали, можно сказать, что по существу речь идет о различии, с одной стороны, в детальном изучении основных понятий математического анализа (таких, как непрерывность, дифференцирование, интегрирование и т.п.), а с другой стороны, в теоретическом развитии анализа конкретных функций, представимых степенными рядами. Одним из достижений теории функций действительного переменного стало создание хорошей теории интегрирования, которую мы рассмотрим ниже. См. также АНАЛИЗ В МАТЕМАТИКЕ; МАТЕМАТИЧЕСКИЙ АНАЛИЗ; ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ; ФУНКЦИЯ; ЧИСЛО; РЯДЫ; МНОЖЕСТВ ТЕОРИЯ; ТОПОЛОГИЯ.

ФУНКЦИИ ДЕЙСТВИТЕЛЬНОГО ПЕРЕМЕННОГО

Функции, используемые в элементарном анализе, задаются формулами. Их графики обычно можно начертить, не отрывая карандаш от бумаги, как, например, график функции y = sinx, или они состоят из отдельных кусков, обладающих этим свойством, как, например, график функции y = tgx (рис. 1). Первоначально, когда строгое определение непрерывности отсутствовало, все функции, графики которых состоят из одного куска, считались обязательно непрерывными. Например, считалось, что непрерывной можно считать функцию, график которой не может лежать по обе стороны от прямой, не пересекая ее. Иначе говоря, непрерывная функция, принимая какие-либо два значения, непременно принимает и все промежуточные значения. Однако нетрудно найти функции, которые, хотя и заданы формулами и обладают указанным свойством, ведут себя не как непрерывные. Например, функция f(x) = sin(1/x) при x № 0 и f(0) = 0 (рис. 2) обладает свойством, о котором идет речь, однако, по мнению многих, не является непрерывной. Можно построить еще более удивительные примеры функций, принимающих действительное значение на любом сколь угодно малом интервале, но тем не менее не являющихся непрерывными. Графики таких функций не только невозможно начертить, но иногда даже и четко представить себе. С другой стороны, работы Ж.Фурье (1768–1830) и П.Дирихле (1805–1859), связанные с рядами Фурье показали, что некоторые заведомо разрывные функции задаются формулами, по крайней мере, если в число последних включить бесконечные ряды.

      Рис. 1.            Рис. 2.

Возникшие при этом логические трудности были постепенно преодолены с помощью приема, типичного для теории функций: понятиям «функция» и «непрерывность» были даны строгие определения и исследованы вытекающие из них логические следствия. Оказалось, что эти следствия не находятся в точном соответствии с интуицией, о чем свидетельствуют приведенные примеры. Один из самых знаменитых примеров такого рода был предложен К.Вейерштрассом (1815–1897) – пример непрерывной, но нигде (ни в одной точке) не дифференцируемой функции. У математика, столкнувшегося с таким примером, может возникнуть много вопросов, например, «У каких непрерывных функций существуют производные?», или «Как можно изменить понятие производной, чтобы оно стало применимым к большинству непрерывных функций?», или «Какими дополнительными свойствами обладают недифференцируемые функции?». Проблемами такого рода и занимается теория функций действительного переменного.

Первое, что требуется от теории функций, – дать определение понятия «функции». Мы не станем приводить здесь самое общее из возможных определений, а просто скажем, что функция – это правило, которое каждому числу (или каждой точке) из данного множества ставит в соответствие другое число, называемое значением функции в этой точке. (См. ФУНКЦИЯ.) Например, одна функция ставит в соответствие каждому действительному числу его квадрат, другая ставит в соответствие каждому положительному действительному числу его логарифм, третья функция ставит в соответствие каждому рациональному числу, записанному в виде несократимой дроби, знаменатель этой дроби. Все названные функции имеют различные области определения; областью определения функции называется множество точек, на котором она определена.

Функция называется непрерывной в точке, если любому бесконечно малому приращению аргумента в этой точке соответствует бесконечно малое приращение функции. Функция, непрерывная во всех точках области определения, называется непрерывной. Например, функция, принимающая в точке x значение x2, непрерывна; но функция, принимающая в точке x значение, равное ближайшему к x целому числу, не превосходящему x, непрерывной не является. В самом деле, значение этой функции изменяется скачком с 0 на 1, когда x изменяется от значения, меньшего 1/2 на сколь угодно малую величину, до значения, большего 1/2, на сколь угодно малую величину. На формальном математическом языке можно сказать, что функция f, принимающая значения f(x), непрерывна в точке y в том случае, если для любого положительного числа e найдется такое число d, что для всех точек x из области определения f(x), удовлетворяющих условию |xy| < d, выполняется неравенство |f(x) – f(y)| < e.

Можно показать, что непрерывные функции, областями определения которых являются подмножества множества действительных чисел, обладают многочисленными свойствами, некоторые из которых интуитивно очевидны, а некоторые – нет. Например, сумма или произведение непрерывных функций также непрерывны. Если непрерывная функция в некоторой точке положительна, то всегда найдется достаточно малая ее окрестность, в которой она останется положительной. Если непрерывная функция принимает в двух точках различные значения a и b, то в промежуточных точках она принимает все значения, заключенные между a и b. Из последнего свойства можно заключить, например, что если растянутой резинке дать сжаться таким образом, чтобы она оставалась прямолинейной (не провисала), то одна из точек на ней останется неподвижной.

Функции, с которыми приходится иметь дело в математическом анализе, как правило, всюду непрерывны в области их определения, за исключением, быть может, отдельных изолированных точек. В то же время было построено много примеров разных функций как разрывных, так и нет, обладающих свойствами, противоречащими интуиции.

Хотя сумма двух непрерывных функций непрерывна, а следовательно, непрерывна и сумма любого конечного числа непрерывных функций, аналогичное утверждение для бесконечных сумм неверно. Например, бесконечная сумма