Также по теме

КОНЕЧНЫЕ РАЗНОСТИ

КОНЕЧНЫЕ РАЗНОСТИ. Исчисление конечных разностей связано с изучением свойств и применений разностей между соседними членами какой-нибудь последовательности или между значениями функции в точках, расположенных с постоянным интервалом в некотором пространстве. Слово «конечные» используется здесь в несколько устаревшем смысле «не бесконечно малые», т.е. не связанные с предельными переходами. Поскольку дифференциальное исчисление занимается изучением пределов разностей, а исчисление конечных разностей – самими разностями, то естественно, что между этими двумя теориями существуют много параллелей. Исчисления конечных разностей используются при интерполяции в математических таблицах, при суммировании числовых рядов, при вычислении интегралов и дифференцировании функций. Разности встречаются также в любой ситуации, когда надо описать поведение объекта, который испытывает воздействие меняющихся условий на определенном расстоянии (во времени и в пространстве). Например, термостату требуется значительное время, чтобы отреагировать на изменение температуры, поэтому он реагирует не на текущую температуру, а на ту, что была минуту назад. Другой пример: автомашиной управляет водитель, которому требуется какое-то время, чтобы отреагировать на возникшую на дороге ситуацию.

Под конечной разностью первого порядка функции f (x) принято понимать величину

где d – некоторая постоянная, которую часто, но не всегда, принимают равной 1. Разность второго порядка обозначается D2f и представляет собой разность разностей, т.е.

Продолжив этот процесс, мы получим разности более высоких порядков D3f (x), D4f (x), ј .

Данные выше определения можно также применить к членам любых последовательностей величин, например, к последовательности

3, 6, 11, 18, 27, 38, ј .

Первые разности равны

6 – 3, 11 – 6, 18 – 11, 27 – 18, 38 – 27, ј,

т.е.

3, 5, 7, 9, 11, ј;

разности второго порядка постоянны и равны 2.

В общем виде такие последовательности можно записать как

где разности первого, второго и т.д. порядков определяются выражениями

а n может принимать любое допустимое для индекса значение.

В некоторых приложениях используются последовательности вида

где индексы могут принимать любые убывающие значения. В этом случае вместо символа D используется символ «разделенной разности». Разделенные разности первого и второго порядков определяются следующим образом:

Помимо уже названных выше приложений, исчисление конечных разностей используется в страховании, теории вероятностей и статистике. В последние годы с изобретением быстродействующих компьютеров конечные разности стали все более широко применяться при решении дифференциальных уравнений, обыкновенных и в частных производных, многие из которых ранее было невозможно решить другими математическими методами.

У истоков теории.

Хотя исследование свойств и использование конечных разностей приходится на современный период развития математики, Птолемей (ок. 150 н.э.) ввел в Альмагесте таблицу разностей первого порядка, чтобы облегчить расчеты в таблице длин хорд. Разности второго порядка использовал при вычислении своих таблиц логарифмов в 1624 Г.Бриггс. Теория интерполяции берет начало со знаменитой пятой леммы из 3-й книги Математических начал (1687) И.Ньютона, в которой впервые была приведена формула, носящая ныне его имя. Частный случай формулы Ньютона, открытый также независимо его современником Дж.Грегори (1638–1675), приведен ниже (см. формулу (7)). В общей формуле интерполяции Ньютона использовались разделенные разности, хотя этот термин, по-видимому, был введен О.де Морганом (1806–1871) в 1848. Первое применение исчисления конечных разностей к задачам теории вероятностей принято связывать с именами П.де Монтмора (1678–1719) и А.де Муавра (1667–1754).

Хотя Л.Эйлер (1707–1783) в своих работах по дифференциальному исчислению использовал предельные переходы в конечных разностях, основания современной теории конечных разностей были заложены в основном Ж.Лагранжем (1736–1813) и П.Лапласом (1749–1827). Первый из них ввел в исчисление конечных разностей символические методы, второй сделал конечные разности главным инструментом в своей Аналитической теории вероятностей (1812).

Под влиянием этих работ математики 19 в. принялись интенсивно разрабатывать предмет, и в 1860 Дж.Буль выпустил свой классический Трактат об исчислении конечных разностей. С тех пор это исчисление и круг его приложений существенно расширились. Одно из наиболее важных приложений конечные разности нашли в статистике. Особенно полезными они оказались в теории сериальной корреляции, в анализе случайных последовательностей и статистических временных рядов.

Интерполяция.

Чтобы понять, как конечные разности используются при интерполяции, рассмотрим следующую таблицу:

Аргумент

Табличное значение

D

D2

D3

x – 2d

f (x – 2d)

 

D2 f (x – 3d)

 
   

D f (x – 2d)

 

D3 f (x – 3d)

x d

f (xd)

 

D2 f (x – 2d)

 
   

D f (xd)

 

D3 f (x – 2d)

x

f (x)

 

D2 f (xd)

 
   

D f (x)

 

D3 f (xd)

x + d

f (x + d)

 

D2 f (x)

 
   

D f (x + d)

 

D3 f (x)

x + 2d

f (x + 2d)

 

D2 f (x + d)

 
   

D f (x + 2d)

 

D3 f (x + d)

x + 3d

f (x + 3d)

 

D2 f (x + 2d)