Также по теме

ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ

ЭЛЕКТРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ, изоляторы – газообразные, жидкие или твердые материалы, которые не проводят электрический ток.

Газообразные изоляторы.

Коронный разряд.

Одним из наиболее известных и распространенных изоляторов является воздух при атмосферном давлении и нормальной температуре. Для низких напряжений удельное электрическое сопротивление такого воздуха составляет ок. 1018 ОмЧсм. Когда напряженность электрического поля поперек однородной воздушной щели достигает 30 кВ/см, проводимость увеличивается, так как начинается фотоионизация воздуха и в конце концов между электродами проскакивает искра. Если геометрия электродов разнородна, как, например, в случае острия и плоскости или провода линии электропередачи над поверхностью земли, вокруг острия или провода при достаточно большой напряженности электрического поля возникает светящаяся область ионизованного воздуха, называемая коронным разрядом. Ток коронного разряда возрастает с увеличением напряжения, и в конце концов возникает искра или дуга в зависимости от мощности источника и сопротивления внешней цепи.

Электрическая прочность.

Повышение давления воздуха приводит к увеличению напряжения коронного разряда и напряженности электрического поля, при которой происходит пробой для рассматриваемой системы электродов. Согласно закону Пашена, в однородном электрическом поле напряжение пробоя не изменится, если при уменьшении межэлектродного зазора во столько же раз увеличить давление газа в зазоре. Такие распространенные газы, как азот, кислород и двуокись углерода, по своей изолирующей способности близки к воздуху при атмосферном давлении. Некоторые пары, особенно те, что содержат серу, хлор или фтор, такие, как гексафторид серы (SF6), четыреххлористый углерод (CCl4) и фреон-12 (CCl2F2), имеют втрое большую электрическую прочность, чем воздух при том же давлении. Влияние давления на напряжение пробоя для некоторых материалов показано на рисунке.

Электроизолирующие свойства газов оказываются наихудшими при давлениях от 1 до 0,01 кПа. Прохождение тока через газ при таких давлениях сопровождается ярким свечением (например, в ртутных или неоновых лампах). Это явление называется тлеющим разрядом.

      ЗАВИСИМОСТЬ НАПРЯЖЕНИЯ ПРОБОЯ ОТ МЕЖЭЛЕКТРОДНОГО РАССТОЯНИЯ в однородном электрическом поле для некоторых изолирующих материалов. 1 – высокий вакуум; 2 – CCl2F2, давление 5,63 атм; 3 – CCl2F2, давление 2,81 атм; 4 – CCl2F2, давление 2,11 атм; 5 – CCl2F2, давление 1,05 атм; 6 – фарфор; 7 – тяжелое трансформаторное масло; 8 – воздух при атмосферном давлении.

Жидкие диэлектрики.

Органические соединения, в частности углеводороды, широко используются в качестве жидких диэлектриков. Для углеводородов характерны низкая диэлектрическая проницаемость (от 2 до 4) и умеренно высокое удельное электрическое сопротивление (ок. 1012 ОмЧсм). Поскольку углеводороды не содержат кислорода или азота, они являются химически стабильными и поэтому подходят для использования в сильных электрических полях, в которых процессы ионизации усиливают химическую нестабильность. Примерами жидких диэлектриков могут служить циклические углеводороды, такие, как бензол (C6H6), или ациклические соединения типа гексана [CH3 (CH2)4CH3]. Большинство углеводородов встречаются в виде смесей; химический состав и строение входящих в них компонентов точно не известны. К ним относятся, в порядке возрастания вязкости, петролейный эфир, парафиновое масло, трансформаторные масла, парафин и различные воски.

Некоторые галогенопроизводные продукты, такие, как хлороформ (CHCl3) и четыреххлористый углерод (CCl4), являются диэлектриками. К жидким неорганическим диэлектрикам относятся такие сжиженные газы, как двуокись углерода и хлор.

Важным преимуществом жидких диэлектриков является их способность к восстановлению своих свойств после искрового пробоя и способность проводить тепло, что важно для трансформаторов.

Твердые диэлектрики.

К типичным твердым электроизоляционным материалам относятся фарфор, стекло, кварц, натуральная и синтетическая резина и пластики. Тонкие слои твердых изоляторов могут иметь очень высокие значения напряжения пробоя и удельного электрического сопротивления, что видно из приводимой ниже таблицы.

Повышение приложенной разности потенциалов к рассматриваемому образцу твердого или жидкого диэлектрика увеличивает ток через него. Это увеличение приводит к отрыву электронов и образованию пространственного положительного заряда вблизи катода. Электрический пробой является результатом искажения электрического поля внутри изолятора. Как твердые, так и жидкие диэлектрики подвержены поляризации, т.е. их диэлектрическая постоянная больше единицы. Поляризация приводит к появлению диэлектрических потерь при приложении переменных электрических полей. Некоторые материалы, такие, как кварц, полиэтилен и некоторые газы, имеют очень низкие диэлектрические потери даже в высокочастотных электрических полях.

Таблица: Свойства твердых диэлектриков
СВОЙСТВА ТВЕРДЫХ ДИЭЛЕКТРИКОВ
Материал Электрическая прочность, кВ/см Диэлектрическая проницаемость Удельное электрическое сопротивление, 1014 ОмЧсм
Слюда 280 5,0–7,0 2000
Стекло (разное) 200–700 3,0–12,0 10–6 ё104
Метилметакрилат (люсит) 650 3,3–4,5 1
Фарфор (неглазурованный) 130 5,0–7,0 3
Эбонит 650 2,0–3,5 104

Вакуум как изолятор.

Когда металлические электроды помещены в газ с давлением меньше 10-2 Па, молекул газа недостаточно для образования заметного тока в межэлектродном зазоре, и в этом случае говорят об изоляции высоким вакуумом. Ионизация молекул остаточного газа при соударении с электронами или положительно заряженными ионами, вылетающими с электродов, при таких давлениях происходит редко. В условиях высокого вакуума при постоянном напряжении ниже 20 кВ на поверхности катода пробой может не наступать при напряженности поля до 5 МВ/см, а на аноде – при напряженности в несколько раз большей. Однако при более высоких напряжениях катодный градиент, при котором наступает пробой, быстро уменьшается. Пробой между металлическими электродами в вакууме происходит из-за обмена заряженными частицами между катодом и анодом. Электрон, вылетающий из катода, ускоряется электрическим полем и ударяет в анод, выбивая положительные ионы и фотоны. Положительные ионы и часть фотонов попадают на катод; ионы ускоряются электрическим полем и вызывают эмиссию вторичных электронов. При некотором критическом значении напряжения и градиента электрического поля для данного материала электродов этот процесс становится неустойчивым, и происходит искровой пробой.

Изоляция высоким вакуумом особенно широко применяется в электронике как для ускорения электронов низкой энергии в обычных электровакуумных приборах, так и для высоковольтных приложений в рентгеновских приборах и ускорителях для ядерных исследований.