ПЕЧЕЙ И ТОПОК ТЕХНОЛОГИЯ

ПЕЧЕЙ И ТОПОК ТЕХНОЛОГИЯ, применение науки о горении к сжиганию топлив в промышленных условиях. Профессиональные навыки инженера-теплотехника требуются в различных практических применениях, начиная от домашних печей и автомобильных двигателей и кончая огромными тепловыми электростанциями на ископаемых органических топливах, которые покрывают основную часть мировой потребности в электроэнергии. Технология печей и топок тесно связана с химией горения топлив, газодинамикой и процессами теплопередачи, а также принципами конструирования тепловых машин.

Задачи, стоящие перед инженером-теплотехником.

Инженер-теплотехник занимается общей проблемой сжигания того или иного конкретного топлива в каком-либо конкретном топочном устройстве. Это топочное устройство может быть промышленной печью, цилиндром автомобильного двигателя либо камерой сгорания ракетного двигателя. Факторы, которые приходится учитывать или рассчитывать инженеру-теплотехнику в своей работе, включают свойства топлива, его хранение, подготовку к сжиганию и подачу; расход подаваемого воздуха; насосы, воздуходувки, вентиляторы и дымовые трубы; давление подачи топлива, воздуха и продуктов сгорания в печи; температуры печи и газов; конструкцию и рабочие характеристики печи и топочного устройства; параметры пламени; высвобождающееся тепло; свойства конструкционных материалов при высоких температурах; тип и параметры системы автоматического управления процессом; защитные устройства и обеспечение требуемой производительности агрегата.

Расход подаваемого воздуха.

Для организации эффективного процесса сжигания топлива нужно знать количество воздуха, необходимое для его сгорания, т.е. для полного окисления содержащихся в нем углерода и водорода. Количество воздуха (окислителя), необходимое для полного сгорания топлива, определяемое теорией горения, называется стехиометрическим. Например, согласно стехиометрии для полного сгорания 1 кг топочного мазута требуется 11,8 м3 воздуха при атмосферном давлении. Если подать меньше воздуха, то сгорание будет неполным. На практике в топку обычно подают избыток воздуха, чтобы обеспечить полное сгорание.

Потоки топлива, жидкостей и газов.

Проблемы течения жидкостей, газов и сыпучих тел первостепенно важны в теплотехнике. Оптимальные расходы топлива, воздуха, теплоносителя и охладителя должны поддерживаться во всех процессах горения и теплопередачи. Для решения этих проблем инженер-теплотехник конструирует горелки и топочные устройства, дымовые трубы и теплообменники и использует насосы, воздуходувки и вентиляторы. Поддержание нужных параметров жидкостных и газовых потоков – одна из его особых забот.

Теплопередача.

Перенос тепловой энергии в топочных устройствах и печах происходит посредством излучения, теплопроводности и конвекции (см. также ТЕПЛОТА). Чтобы приносить максимальную пользу, эта энергия должна передаваться с минимальными потерями; кроме того, надо не допускать перегрева устройств, чтобы не вызвать повреждения горелок, стенок топок, труб котлов и прочего теплотехнического оборудования.

Конструирование.

Инженер-теплотехник конструирует печи, котлы, горелки, теплообменники и уловители продуктов сгорания. Помимо конструирования тепловых машин и агрегатов, он должен знать строительное дело и материаловедение.

Топочные устройства.

Многие типы топочных устройств и камер сгорания используются в промышленности. Например, в мартеновских печах предусмотрены обширные теплонапряженные зоны для расплавления чугуна и стального лома. Для придания материалам нужных свойств можно использовать обжиговые печи при наличии прямого контакта с пламенем или без него; они применяются в производстве таких изделий, как стекло, кирпич и керамика. В топках котлов сжигаются твердые, жидкие и газообразные топлива для нагрева и испарения воды в паровых котлах с разнообразными целями, например для обогрева помещений и производства электроэнергии. В камерах сгорания двигателей, например, турбореактивных самолетов, при сгорании топлива в атмосферном воздухе непосредственно образуется горячее газообразное рабочее тело двигателя. Этот процесс также используется в ракетных двигателях, где горячие продукты сгорания горючего и окислителя, запасенных на борту ракеты, истекают из сопла, создавая тягу.