Также по теме

СВЕРХПРОВОДИМОСТЬ

СВЕРХПРОВОДИМОСТЬ, состояние, в которое при низкой температуре переходят некоторые твердые электропроводящие вещества. Сверхпроводимость была обнаружена во многих металлах и сплавах и в некоторых полупроводниковых и керамических материалах, число которых все возрастает. Два из наиболее удивительных явлений, которые наблюдаются в сверхпроводящем состоянии вещества, – исчезновение электрического сопротивления в сверхпроводнике и выталкивание магнитного потока (см. ниже) из его объема. Первый эффект интерпретировался ранними исследователями как свидетельство бесконечно большой электрической проводимости, откуда и произошло название сверхпроводимость.

Исчезновение электрического сопротивления может быть продемонстрировано возбуждением электрического тока в кольце из сверхпроводящего материала. Если кольцо охладить до нужной температуры, то ток в кольце будет существовать неограниченно долго даже после удаления вызвавшего его источника тока. Магнитный поток – это совокупность магнитных силовых линий, образующих магнитное поле. Пока напряженность поля ниже некоторого критического значения, поток выталкивается из сверхпроводника, что схематически показано на рис. 1.

      Рис. 1. МАГНИТНЫЙ ПОТОК проникает в стержень, находящийся в нормальном состоянии (а), но выталкивается из стержня, охлажденного до сверхпроводящего состояния (б).

Твердое тело, проводящее электрический ток, представляет собой кристаллическую решетку, в которой могут двигаться электроны. Решетку образуют атомы, расположенные в геометрически правильном порядке, а движущиеся электроны – это электроны с внешних оболочек атомов. Поскольку поток электронов и есть электрический ток, эти электроны называются электронами проводимости. Если проводник находится в нормальном (несверхпроводящем) состоянии, то каждый электрон движется независимо от других. Способность любого электрона перемещаться и, следовательно, поддерживать электрический ток ограничивается его столкновениями с решеткой, а также с атомами примесей в твердом теле. Чтобы в проводнике существовал ток электронов, к нему должно быть приложено напряжение; это значит, что проводник имеет электрическое сопротивление. Если же проводник находится в сверхпроводящем состоянии, то электроны проводимости объединяются в единое макроскопически упорядоченное состояние, в котором они ведут себя уже как «коллектив»; на внешнее воздействие реагирует также весь «коллектив». Столкновения между электронами и решеткой становятся невозможными, и ток, однажды возникнув, будет существовать и в отсутствие внешнего источника тока (напряжения). Сверхпроводящее состояние возникает скачкообразно при температуре, которая называется температурой перехода. Выше этой температуры металл или полупроводник находится в нормальном состоянии, а ниже ее – в сверхпроводящем. Температура перехода данного вещества определяется соотношением двух «противоположных сил»: одна стремится упорядочить электроны, а другая – разрушить этот порядок. Например, тенденция к упорядочиванию в таких металлах, как медь, золото и серебро, столь мала, что эти элементы не становятся сверхпроводниками даже при температуре, лежащей лишь на несколько миллионных кельвина выше абсолютного нуля. Абсолютный нуль (0 К, –273,16° С) – это нижняя граница температуры, при которой вещество теряет все свое тепло. Другие металлы и сплавы имеют температуры перехода в диапазоне от 0,000325 до 23,2 К (см. таблицу). В 1986 были созданы сверхпроводники из керамических материалов с необычайно высокой температурой перехода. Так, для образцов керамики YBa2Cu3O7 температура перехода превышает 90 К (см. также ТЕПЛОТА).

Сверхпроводящее состояние физики называют макроскопическим квантово-механическим состоянием. Квантовая механика, которой обычно пользуются для описания поведения вещества в микроскопическом масштабе, здесь применяется в макроскопическом масштабе. Именно то обстоятельство, что квантовая механика здесь позволяет объяснить макроскопические свойства вещества, и делает сверхпроводимость столь интересным явлением.

Открытие.

Очень много сведений о металле дает соотношение между внешним напряжением и вызванным им током. Вообще говоря, это соотношение имеет вид равенства V/I = R, где V – напряжение, I – ток, а R – электрическое сопротивление. Согласно этому закону (закону Ома), электрический ток пропорционален напряжению при любом значении величины R, которая является коэффициентом пропорциональности. См. также ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ.

Сопротивление обычно не зависит от тока, но зависит от температуры. Получив в 1908 жидкий гелий, Г.Камерлинг-Оннес из Лейденского университета (Нидерланды) стал измерять сопротивление чистой ртути, погруженной в жидкий гелий, и обнаружил (1911), что при температурах жидкого гелия сопротивление ртути падает до нуля. Позднее было установлено, что многие другие металлы и сплавы тоже становятся сверхпроводящими при низких температурах.

Следующее важное открытие было сделано в 1933 немецким физиком В.Мейсснером и его сотрудником Р.Оксенфельдом. Они обнаружили, что если цилиндрический образец поместить в продольное магнитное поле и охладить ниже температуры перехода, то он полностью выталкивает из себя магнитный поток. Эффект Мейсснера, как назвали это явление, был важным открытием, поскольку благодаря ему физикам стало ясно, что сверхпроводимость – квантово-механическое явление. Если бы сверхпроводимость заключалась только в исчезновении электрического сопротивления, то ее можно было пытаться объяснить законами классической физики.

СВОЙСТВА СВЕРХПРОВОДНИКОВ

В физической литературе часто называют сверхпроводниками вещества или материалы, которые при разных условиях могут находиться в сверхпроводящем или несверхпроводящем состоянии. Один и тот же простой (состоящий из одинаковых атомов) металл, сплав или полупроводник может в каких-то интервалах температур или внешних магнитных полей быть сверхпроводящим; при температурах или полях бóльших критических значений – это обычный (принято говорить – нормальный) проводник.

После открытия эффекта Мейсснера было выполнено большое число экспериментов со сверхпроводниками. Среди исследованных свойств были:

1) Критическое магнитное поле – значение поля, выше которого сверхпроводник находится в нормальном состоянии. Критические поля обычно лежат в интервале от нескольких десятков гаусс до нескольких сотен тысяч гаусс в зависимости от сверхпроводника и его металлофизического состояния. Критическое поле данного сверхпроводника меняется с температурой, уменьшаясь при ее повышении. При температуре перехода критическое поле равно нулю, а при абсолютном нуле оно максимально (рис. 2).

      Рис. 2. СВЕРХПРОВОДИМОСТЬ разрушается при сильных магнитных полях и высоких температурах. Представлена фазовая диаграмма магнитное поле – абсолютная температура для олова. При условиях, соответствующих точке А, олово находится в нормальном, несверхпроводящем состоянии. Если же его охладить до точки В, то оно становится сверхпроводящим.

2) Критический ток – максимальный постоянный ток, который может выдерживать сверхпроводник без потери сверхпроводящего состояния. Как и критическое магнитное поле, критический ток сильно зависит от температуры, уменьшаясь при ее увеличении.

3) Глубина проникновения – расстояние, на которое магнитный поток проникает в сверхпроводник. Глубина проникновения оказывается функцией температуры и различна в разных материалах: от 3Ч10–6 до 2Ч10–5 см. Магнитный поток выталкивается из сверхпроводника токами, циркулирующими в поверхностном слое, толщина которого приблизительно равна глубине проникновения.