Энциклопедия Кругосвет
Энциклопедия Кругосвет
Универсальная научно-популярная энциклопедия

ИСТОРИЯ и ОБЩЕСТВО

  • Экономика и Право
  • Психология и Педагогика
  • Социология
  • Философия
  • Религия
  • Народы и Языки
  • Государство и Политика
  • Военное дело
  • Археология
  • История
  • Лингвистика

ПУТЕШЕСТВИЯ и ГЕОГРАФИЯ

  • География
  • Геология
  • Страны мира

ИСКУССТВО и КУЛЬТУРА

  • Живопись и Графика
  • Скульптура
  • Архитектура
  • Декоративно-прикладное искусство
  • Дизайн и Фотография
  • Литература
  • Музыка
  • Театр и Кино
  • Эстрада и Цирк
  • Балет

НАУКА и ТЕХНИКА

  • Авиация и Космонавтика
  • Астрономия
  • Биология
  • Военная техника
  • Математика
  • Технология и Промышленность
  • Транспорт и Связь
  • Физика
  • Химия
  • Энергетика и Строительство

ЗДОРОВЬЕ и СПОРТ

  • Медицина
  • Спорт

ЦИКЛОИДА

ЦИКЛОИДА (в переводе с греч. кругообразный) – плоская трансцендентная кривая, которую описывает точка окружности радиуса r, катящейся по прямой без скольжения (трансцендентной кривой называется кривая, которая в прямоугольных координатах не может быть описана алгебраическим уравнением). Ее параметрическое уравнение

Также по теме:
МАТЕМАТИКИ ИСТОРИЯ
МАТЕМАТИКИ ИСТОРИЯ

x = rt – r sin t,
y = r – r cos t

Точки пересечения циклоиды с прямой, по которой катится окружность (эта окружность называется производящей, а прямая, по которой она катится, – направляющей), называются точками возврата, а самые высокие точки на циклоиде, расположенные посредине между соседними точками возврата, называются вершинами циклоиды.

Также по теме:
КРИВАЯ
КРИВАЯ

ЦИКЛОИДА

Первым изучать циклоиду начал Галилео Галилей. Длина одной арки циклоиды была определена в 1658 английским архитектором и математиком Кристофером Реном, автором проекта и строителем купола собора Святого Павла в Лондоне. Оказалось, что длина циклоиды равна 8-ми радиусам производящей окружности.
Одно из замечательных свойств циклоиды, давшее ей название – брахистохрона (от греческих слов «кратчайший» и «время) связано с решением задачи о наискорейшем спуске. Встал вопрос, какую форму надо придать хорошо отшлифованному (чтобы практически исключить трение) желобу, соединяющему две  точки, чтобы шарик скатился вниз от одной точки к другой в кратчайшее время. Братья Бернулли доказали, что желоб должен иметь форму опрокинутой вниз циклоиды.

Также по теме:
АБСТРАКТНЫЕ ПРОСТРАНСТВА
АБСТРАКТНЫЕ ПРОСТРАНСТВА

Родственные циклоиде кривые можно получить, рассматривая траектории точек, не находящихся на производящей окружности.

Пусть точка С0 находится внутри окружности. Если провести через С0 вспомогательную окружность с тем же центром, что и у производящей окружности, то при качении производящей окружности по прямой АВ маленькая окружность будет катиться по прямой A´В´, но ее качение  будет сопровождаться скольжением, и точка С0 описывает кривую, называемую укороченной циклоидой.

Аналогичным образом определяется удлиненная циклоида – это траектория точки, расположенной на продолжении радиуса производящей окружности, при этом качение сопровождается скольжением в противоположном направлении.

Циклоидальные кривые применяются при многих технических расчетах и свойства их используются, например, при построении профилей зубьев шестерен, в циклоидальных маятниках, в оптике и, таким образом, изучение этих кривых важно с прикладной точки зрения. Не менее важно и то, что, изучая эти кривые и их свойства, ученые 17 в. разрабатывали приемы, которые привели к созданию дифференциального и интегрального исчислений, а задача о брахистохроне явилась шагом к изобретению вариационного исчисления. 

Елена Малишевская

 

Также по теме:
Математика

Литература:

Маркушевич А.И. Замечательные кривые. М., Наука, 1978
Берман Г.Н. Циклоида. М., Наука, 1980

Проверь себя!
Ответь на вопросы викторины «Математика»
Как звали математика, который в 19 лет решил задачу, не поддававшуюся усилиям лучших геометров со времен Евклида?
Пройти тест
Разделы энциклопедии
-A +A
Проверь свои знания!
Ответь на вопросы викторины

Физика

Пройти тест
Деятели 20 века

Деятели 20 века

Пройти тест

История в фактах

Пройти тест

Древний мир

Пройти тест
Ещё тесты
  • Тесты
  • Правила
  • Авторы
  • О проекте
  • Контакты
© 1997-2025 Универсальная научно-популярная энциклопедия Кругосвет