Энциклопедия Кругосвет
Энциклопедия Кругосвет
Универсальная научно-популярная энциклопедия

ИСТОРИЯ и ОБЩЕСТВО

  • Экономика и Право
  • Психология и Педагогика
  • Социология
  • Философия
  • Религия
  • Народы и Языки
  • Государство и Политика
  • Военное дело
  • Археология
  • История
  • Лингвистика

ПУТЕШЕСТВИЯ и ГЕОГРАФИЯ

  • География
  • Геология
  • Страны мира

ИСКУССТВО и КУЛЬТУРА

  • Живопись и Графика
  • Скульптура
  • Архитектура
  • Декоративно-прикладное искусство
  • Дизайн и Фотография
  • Литература
  • Музыка
  • Театр и Кино
  • Эстрада и Цирк
  • Балет

НАУКА и ТЕХНИКА

  • Авиация и Космонавтика
  • Астрономия
  • Биология
  • Военная техника
  • Математика
  • Технология и Промышленность
  • Транспорт и Связь
  • Физика
  • Химия
  • Энергетика и Строительство

ЗДОРОВЬЕ и СПОРТ

  • Медицина
  • Спорт

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ

Содержание статьи
  • Кривые на плоскости и в пространстве.
  • Поверхности в пространстве.
  • Риманова геометрия.
  • Дифференциальная геометрия в целом.

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ, раздел геометрии, в котором свойства кривых, поверхностей и других геометрических многообразий изучаются методами математического анализа, в первую очередь – дифференциального исчисления. Работы по дифференциальной геометрии К.Гаусса (1777–1855), Г.Дарбу (1842–1917), Л.Бианки (1856–1928) и Л.Эйзенхарта (1876–1965) посвящены, главным образом, свойствам, проявляющимся в малой окрестности обычной точки многообразия. Это предмет так называемой дифференциальной геометрии «в малом». Более поздние работы, особенно начиная с 1930-х годов, посвящены изучению взаимосвязей между дифференциальной геометрией малых окрестностей и «глобальными» свойствами всего многообразия. Эту теорию называют дифференциальной геометрией «в целом». Кроме того, дифференциальная геометрия разбивается на разделы по аналогии с подразделением всей геометрии. Если на рассматриваемом многообразии определено расстояние, то возникает «метрическая» дифференциальная геометрия, называемая римановой в честь ее создателя Б.Римана (1826–1866). Аналогично проективная, аффинная и конформная дифференциальные геометрии занимаются изучением дифференциальных свойств пространств, в которых выделяются проективные, аффинные или конформные аспекты. Хотя первоначально дифференциальная геометрия занималась изучением свойств кривых и поверхностей в обычном пространстве, ныне она изучает многообразия любого числа измерений, которые могут быть (а могут и не быть) подпространствами евклидова пространства.

Кривые на плоскости и в пространстве.

Также по теме:
ГЕОМЕТРИЯ
ГЕОМЕТРИЯ

Будем задавать кривые на плоскости параметрическими уравнениями x = f (s), y = g (s), где s – натуральный параметр, длина дуги кривой. В векторной форме это можно записать так: X = F(s). См. также ВЕКТОР.

Тогда единичный вектор касательной к кривой задается формулой

Также по теме:
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Вектор dT/ds в каждой точке кривой перпендикулярен к касательной, а его длина равна кривизне k кривой. Прямая, перпендикулярная касательной, проходящая через точку касания, называется нормалью к кривой. Следовательно, если N – единичный вектор нормали, то

Кроме того, можно показать, что

Если k задана как функция от s, например, k = f(s), то уравнения (1)–(3) определяют кривую однозначно с точностью до ее положения на плоскости. Соотношение k = f(s) называется внутренним уравнением кривой.

Кривая в обычном пространстве, не лежащая на плоскости, называется пространственной кривой. Чтобы исследовать дифференциальную геометрию такой кривой, зададим ее параметрическими уравнениями x = f(s), y = g(s), z = k(s) (s – натуральный параметр) или, в векторной форме, уравнением X = F(s). Единичный вектор касательной определяется равенством

Вектор dT/ds в каждой точке задает нормаль к кривой; заметим, что это лишь одна из бесконечного множества нормалей к пространственной кривой в этой точке. Единичный вектор в направлении вектора dT/ds называется единичным вектором главной нормали N кривой, а длина вектора dT/ds, как и в случае плоских кривых, называется кривизной кривой:

Вектор dN/ds перпендикулярен к N, и поэтому его можно записать в виде

где B – единичный вектор нормали, перпендикулярной к N. Прямая, определяемая вектором B, называется бинормалью к кривой, а коэффициент t в (6) – кручением кривой. Наконец, рассмотрим вектор dB/ds; можно показать, что

Соотношения (5)–(7) называются формулами Френе. Из них следует, что если функции k = f (s) и t = y (s) заданы, то кривая определена однозначно с точностью до положения в пространстве. Таким образом, в этих формулах содержится вся теория пространственных кривых. Плоскость, определяемая векторами T и N, называется соприкасающейся, плоскость, содержащая векторы N и B, – нормальной и плоскость, проходящая через векторы B и T, – спрямляющей.

Поверхности в пространстве.

Дифференциальные свойства поверхностей в обычном пространстве выводятся из их первой и второй основных квадратичных форм. Пусть поверхность задана параметрическими уравнениями x = f (u1, u2), y = g (u1, u2), z = h (u1, u2) или векторным уравнением X = F (u1, u2). (Верхними индексами здесь нумеруются переменные.) Дифференциал длины дуги ds определяется первой основной формой, а именно

где g11, g12 и g22 – функции от u1 и u2, определяемые выражениями

Полезно также ввести величины gij:

Первая фундаментальная форма полностью определяет внутреннюю геометрию поверхности, т.е. ту геометрию, которую наблюдал бы воображаемый обитатель поверхности, неспособный воспринимать происходящие вне нее явления. Такое двумерное существо находилось бы в положении, сравнимом с положением обычного трехмерного человека, воспринимающего геометрию нашего трехмерного пространства, но неспособного воспринимать свойства пространства большего числа измерений, в котором лежит наше пространство (если такое пространство действительно существует).

Плоскость, касательная к поверхности в точке P, определяется двумя векторами в P, задаваемыми формулами

Единичный вектор нормали N определяется как общий перпендикуляр к T1 и T2. Как и в теории кривых, удобно рассмотреть векторы ¶Ti/¶uj (i, j = 1, 2). Эти векторы можно разложить по направлениям векторов T1, T2 и N:

Величины Гijk в (9) называются символами Кристоффеля второго рода. Они определяются через величины [i, j, k] (символы Кристоффеля первого рода) соотношениями

где по определению

Величины bij в (9) называются коэффициентами второй основной формы поверхности. Сравнивая (9) с (5), нетрудно видеть, что для поверхности bijиграют такую же роль, как кривизна для плоских кривых: они описывают внешние свойства поверхности – непостижимые для воображаемого двумерного существа, живущего на поверхности, но доступные пониманию обычного трехмерного человека.

Любой единичный вектор, касательный к поверхности, может быть записан в виде

где g11l1l1 + 2g12l1l2 + g22l2l2 = 1. Кривизна поверхности в направлении вектора l равна

За полуоборот вектора l кривизна k(l) изменяется и достигает в общем случае ровно одного максимального и одного минимального значения. Эти значения соответствуют двум положениям вектора l, находящимся под прямым углом друг к другу, а соответствующие значения k(l) называются главными кривизнами поверхности. Произведение главных кривизн называется полной (гауссовой) кривизной K поверхности, а их сумма – средней кривизной H. Эти величины определяются выражениями

и

Важную роль играют поверхности с постоянной гауссовой кривизной. При K = 0 поверхность плоская, или развертывающаяся, поскольку у нее такая же внутренняя геометрия, как у плоскости. Примерами развертывающихся поверхностей могут служить прямые круговые конусы и цилиндры. При K > 0 поверхность имеет эллиптическую неевклидову геометрию, а при K < 0 – гиперболическую неевклидову геометрию.

Гаусс доказал замечательную теорему относительно кривизны K, утверждающую, что она может быть выражена через одни лишь внутренние величины, а именно через gij и их производные. Это следует из того, что определитель матрицы (bij) равен R1212, где

Величина (Rlijk) называется тензором кривизны поверхности.

Риманова геометрия.

Обобщением и абстрактным вариантом только что описанной геометрии поверхности служит риманова геометрия. Она описывает n-мерное многообразие, на котором элемент длины дуги определяется формулой

в некоторой системе координат по аналогии с (8). На обычной поверхности определитель матрицы (gij) положителен, в римановой же геометрии предполагается лишь, что он отличен от нуля. Риманово пространство с римановой геометрией необязательно является подпространством пространства какой-нибудь более высокой размерности. Символы Кристоффеля и тензор кривизны определяются через gij, как и в описанном выше случае обычных поверхностей.

Секционная кривизна K12 риманова пространства в точке P определяется через ориентацию, задаваемую двумя векторами l1 и l2:

Если она одинакова для всех векторов l1 и l2, то она постоянна и для всех точек P, и пространство называется пространством постоянной кривизны, скажем K, где

Свернутый тензор кривизны, определяемый выражением

играет важную роль в общей теории относительности Эйнштейна. Пространство, в котором Rik = mgij, называется пространством Эйнштейна.

Дифференциальная геометрия в целом.

Наиболее фундаментальная из известных взаимосвязей между топологией и дифференциальной геометрией устанавливается теоремой Гаусса – Бонне, которая утверждает, что для обычных замкнутых поверхностей

где интеграл берется по всей поверхности, K – гауссова кривизна и c – характеристика Эйлера – Пуанкаре. На произвольные замкнутые римановы пространства этот результат был распространен в 1943 К.Аллендёрфером и А.Вейлем. См. также МАТЕМАТИЧЕСКИЙ АНАЛИЗ, ТОПОЛОГИЯ.

Также по теме:
Математика

Литература:

Рашевский П.К. Курс дифференциальной геометрии. М., 1956
Погорелов А.В. Дифференциальная геометрия. М., 1969
Стернберг С. Лекции по дифференциальной геометрии. М., 1970

 

Проверь себя!
Ответь на вопросы викторины «Математика»
Как звали математика, который в 19 лет решил задачу, не поддававшуюся усилиям лучших геометров со времен Евклида?
Пройти тест
Разделы энциклопедии
-A +A
Проверь свои знания!
Ответь на вопросы викторины

Африка

Пройти тест

Известные династии

Пройти тест

Неизвестные подробности

Пройти тест

Философия

Пройти тест
Ещё тесты
  • Тесты
  • Правила
  • Авторы
  • О проекте
  • Контакты
© 1997-2025 Универсальная научно-популярная энциклопедия Кругосвет