Содержание статьи
Также по теме

СЕГНЕТОЭЛЕКТРИЧЕСТВО

СЕГНЕТОЭЛЕКТРИЧЕСТВО, электрический аналог ферромагнетизма. Подобно тому как в ферромагнитных веществах при помещении их в магнитное поле проявляется остаточная магнитная поляризация (момент), в сегнетоэлектрических диэлектриках, помещенных в электрическое поле, возникает остаточная электрическая поляризация.

Микроскопической причиной сегнетоэлектричества является наличие внутри вещества атомных (или молекулярных) диполей. Эти диполи ориентируются внешним электрическим полем и остаются ориентированными после снятия поля; переключение направления поля на противоположное приводит к обратной ориентации диполей. Принципиальное отличие сегнетоэлектричества от ферромагнетизма состоит в том, что свободные электрические заряды могут экранировать электрические поля, создаваемые электрическими диполями, а это затрудняет прямое наблюдение статической поляризации. Поляризацию обычно измеряют по так называемой петле гистерезиса. Образец помещают между пластинами конденсатора, на которые подается переменное напряжение E. На экране осциллографа регистрируется кривая зависимости заряда, возникающего на пластинах, а тем самым и электрической поляризации (поскольку заряд, отнесенный к единице площади поверхности пластин, является мерой вектора электрической поляризации P), от напряжения (поля) E. Петля гистерезиса, представленная на рис. 1, характеризуется двумя величинами: остаточной поляризацией P (любого знака), имеющейся даже при нулевом поле E, и коэрцитивным полем Ec, при котором вектор поляризации изменяет направление на обратное. Площадь петли гистерезиса равна работе электрических сил, затрачиваемой в пределах одного цикла перехода сегнетоэлектрика между двумя эквивалентными состояниями поляризации противоположного знака.

      Рис. 1. ПЕТЛЯ ГИСТЕРЕЗИСА ДЛЯ СЕГНЕТОЭЛЕКТРИКА, демонстрирующая характерную связь между вектором поляризации P и электрическим полем E; Ec – коэрцитивное поле, при котором вектор поляризации меняет направление на обратное.

Хотя образование петли гистерезиса является свидетельством наличия сегнетоэлектричества, во многих сегнетоэлектрических веществах она возникает лишь при определенных условиях, а иногда и вообще не наблюдается. Подобные трудности характерны для электропроводящих веществ, материалов с высокими диэлектрическими потерями и очень большими коэрцитивными полями. В этих случаях для выявления сегнетоэлектричества используются другие эффекты, в частности пироэлектрический эффект (зависимость вектора поляризации от температуры), зависимость диэлектрической проницаемости от температуры, наличие доменной структуры (см. ниже), особенности кристаллической структуры и динамики решетки. См. также КРИСТАЛЛЫ И КРИСТАЛЛОГРАФИЯ.

Первым веществом, в котором было обнаружено сегнетоэлектричество, была сегнетова соль KNaC4H4O6Ч4H2O. Аналогия между диэлектрическими свойствами этого вещества и ферромагнитными свойствами железа была установлена Дж.Валашеком (США) в 1920. Ему же удалось определить и температуру Кюри Tc как температуру перехода, при которой в сегнетовой соли возникает упорядоченная поляризация. Выше этой температуры дипольное упорядочение, а вместе с ним и сегнетоэлектричество, отсутствуют.

Ряд сегнетоэлектрических кристаллов был впервые получен в 1935 в Цюрихе Г.Бушем и П.Шеррером. В качестве исходного был взят кристалл дигидрофосфата калия KH2PO4. Изоморфные с ним кристаллы, в которые вместо фосфора и водорода входят мышьяк и дейтерий, тоже обнаруживали сегнетоэлектрические свойства. Соединения аммония же (например, NH4H2PO4) не становились сегнетоэлектрическими ниже температуры Кюри, и спустя 20 лет было установлено, что они являются антисегнетоэлектриками. Это означает, что чередующиеся диполи таких кристаллов ориентируются антипараллельно друг другу (подобно магнитным моментам в антиферромагнетике). До 1943 считалось, что содержание водорода в известных сегнетоэлектриках является непременным условием сегнетоэлектричества. Л.Онсагер и Дж.Слэтер в 1939 предположили, что в кристалле КН2РО4 носителями сегнетоэлектрических свойств являются ионы водорода, смещенные из положения равновесия и упорядочивающиеся при температуре ниже Тс.

Однако после открытия в 1945 Б.М.Вулом и И.М.Гольдманом сегнетоэлектричества в титанате бария BaTiO3 стало ясно, что наличие или отсутствие атомов водорода несущественно для сегнетоэлектричества. Выяснилось также, что явление сегнетоэлектричества распространено значительно шире, чем было принято считать ранее; в частности, оно возможно и в сравнительно простых кристаллических структурах. Вслед за титанатом бария в короткий срок было открыто много других сегнетоэлектриков, и в настоящее время их известно более 340.

Кристаллическая структура BaTiO3 изображена на рис. 2. Она достаточно проста для исследования методом рентгеноструктурного анализа и дала первую детальную картину атомных смещений, сопутствующих установлению сегнетоэлектричества. Выше температуры Кюри Тс (135° С) кристалл имеет объемно-центрированную кубическую решетку. При температуре, равной Тс, ион титана скачком смещается вдоль одной из осей куба (рис. 3), в результате чего возникает тетрагональная структура. Соседние ионы титана смещаются в том же направлении, что и приводит к появлению макроскопической поляризации, т.е. сегнетоэлектричеству. При температурах ниже комнатной по мере того, как ионы Ti смещаются вдоль других осей куба, происходят два дальнейших фазовых перехода в орторомбическую и ромбоэдрическую структуры. Было выявлено много соединений, обладающих подобной простой структурой перовскита или близкой к ней, и найдены важные технические применения. Температура Кюри и другие сегнетоэлектрические характеристики существенно зависят от состава таких соединений.

      Рис. 2. КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА ТИТАНАТА БАРИЯ, элементарная ячейка. При поляризации кристалла ионы титана и кислорода смещаются из своих позиций.

В кубической структуре шесть главных направлений вдоль ребер куба эквивалентны друг другу, а потому понятие тетрагонального искажения в равной мере пригодно по отношению к любому из них. В только что выращенном кристалле отдельные области, «домены», имеют разные направления поляризации. Эти домены часто выявляются в поляризованном свете, поскольку оптические свойства домена обладают той же симметрией, что и локальная кристаллическая структура. Ширина границ между доменами («доменных стенок»), как правило, не превышает нескольких элементарных ячеек.

Если к многодоменному кристаллу приложить электрическое поле (превышающее Ec), то домены, ориентированные вдоль поля, будут расти (вследствие смещения доменной стенки) за счет ориентированных против поля. В итоге весь кристалл превращается в один домен с однородными оптическими свойствами. Обращение вектора поляризации тоже сопровождается смещением доменной стенки.