Также по теме

ЧИСЕЛ ТЕОРИЯ

ЧИСЕЛ ТЕОРИЯ, раздел чистой математики, занимающийся изучением целых чисел 0, ±1, ±2,... и соотношений между ними. Иногда теорию чисел называют высшей арифметикой. Отдельные вычисления, производимые над конкретными числами, например, 9 + 16 = 25, не представляют особого интереса и обычно не входят в предмет теории чисел. С другой стороны, выписанное только что равенство становится несравненно более интересным, если заметить, что оно представляет собой простейшее решение в целых числах (если не считать тривиальных решений x = z, y = 0) уравнения Пифагора x2 + y2 = z2. С этой точки зрения последнее уравнение непосредственно приводит к некоторым подлинным теоретико-числовым проблемам, например, (1) имеет ли x2 + y2 = z2 бесконечно много или только конечное число решений в целых числах и как их можно найти? (2) Какие целые числа представимы в виде x2 + y2, где x и y – целые числа? (3) Существуют ли решения в целых числах аналогичного уравнения xn + yn = zn, где n – целое число, большее 2? Одна из интригующих особенностей теории чисел состоит в том, что эти три вопроса, формулируемые так легко и понятно, в действительности находятся на совершенно различных уровнях сложности. Пифагор и Платон, а возможно гораздо раньше вавилонские математики, знали, что уравнение x2 + y2 = z2 имеет бесконечно много решений в целых числах, а древнегреческому математику Диофанту (ок. 250 до н.э.) было известно, что каждое такое решение представимо в виде x = r2s2, y = 2rs, z = r2 + s2 при подходящих целых числах r и s и что при любых двух целых числах r и s соответствующие значения x, y и z образуют решение. Что касается второго вопроса, то структуру множества целых чисел, представимых в виде суммы двух квадратов, описал П.Ферма (1601–1665), основатель теории чисел в ее современной форме. Ферма показал, что целое число m представимо в виде суммы двух квадратов в том и только в том случае, когда частное от деления числа m на наибольший квадрат, делящий число m, не содержит простого множителя вида 4k + 3 (k – целое число). Этот результат гораздо тоньше, чем первый, а его доказательство далеко не очевидно, хотя и не является слишком трудным. Третий вопрос оставался без ответа, несмотря на упорнейшие усилия самых блестящих математических умов, на протяжении трех последних столетий. Ферма примерно в 1630 на полях одной из книг написал, что уравнение xn + yn = zn не имеет решений в целых числах x, y и z, отличных от нуля, при n больше 2, но самого доказательства не оставил. И только в 1994 Э.Вайлсу из Принстонского университета удалось доказать эту теорему, уже несколько веков носящую название «Великой теоремы Ферма».

Вне самой математики теория чисел имеет довольно мало приложений, и развивалась она не ради решения прикладных задач, а как искусство ради искусства, обладающее своей внутренней красотой, тонкостью и трудностью. Тем не менее теория чисел оказала большое влияние на математическую науку, поскольку некоторые разделы математики (в том числе и такие, которые впоследствии нашли применение в физике) были первоначально созданы для решения особенно сложных проблем теории чисел. См. также ЧИСЛО; МАТЕМАТИКА.

Мультипликативные основания.

Условимся считать, что в дальнейшем все латинские буквы будут означать (если особо не оговорено противное) целые числа. Мы говорим, что b является делителем числа a (или что b делит a) и обозначаем это b|a, если существует такое целое число c, что a = bc. Числа 1 и -1 («единицы»), обратные к которым – целые числа, являются делителями любого целого числа. Если ±1 и ±a – единственные делители числа a, то оно называется простым; если же существуют другие делители, то число a называется составным. (Простыми числами являются, например, 2, 3, 5, 7, 11, 13.) Если положительное целое число a составное, то его можно представить в виде a = bc, где 1 < b < a и 1 < c < a; если либо b, либо c составное, то его в свою очередь можно разложить на множители. Продолжая разлагать на множители, мы в конце концов должны прийти к представлению числа a в виде произведения конечного числа простых чисел (не все из которых обязательно различны); например, 12 = 2Ч2Ч3, 13 = 1Ч13, 100 = 2Ч2Ч5Ч5. В противном случае число a можно было бы записать в виде произвольно большого числа множителей, каждый из которых не меньше 2, что невозможно. Теорема о единственности разложения на простые множители, одна из фундаментальных теорем теории чисел, утверждает, что с точностью до очевидных изменений в знаках и порядке множителей любые два разложения числа a совпадают; например, любое разложение числа 12 на простые множители представимо тремя числами – 2Ч2Ч3; 2Ч3Ч2; 3Ч2Ч2; другие разложения получаются заменой любых двух множителей равными по абсолютной величине отрицательными числами. Теорема о единственности разложения на простые множители встречается в «Началах» Евклида, где она доказана с помощью понятия наибольшего общего делителя (НОД). Если d > 0 – общий делитель чисел a и b и, в свою очередь, делится на любое другое число, делящее a и b, то d называется наибольшим общим делителем чисел a и b, что записывается так: НОД(a, b) = d; например, НОД (12, 18) = 6. Если НОД (a, b) = 1, то числа a и b называются взаимно простыми. Евклид показал, что для любых двух чисел a и b, отличных от нуля, существует единственный НОД, и предложил систематический метод, напоминающий «деление углом»; с НОД чисел a и b связано их наименьшее общее кратное (НОК) – наименьшее положительное число, которое делится на каждое из чисел a и b. Наименьшее общее кратное равно произведению чисел a и b, деленному на их НОД, или |ab|/НОД (a, b). См. также АРИФМЕТИКА.

Согласно теореме о единственности разложения на простые множители, простые числа являются теми «кирпичиками», из которых строятся целые числа. Помимо ±2, все остальные простые числа нечетны, так как четным число называется только когда оно делится на 2. Уже Евклиду было известно, что простых чисел бесконечно много. Он доказал это, заметив, что число N = (p1p2...pn) + 1 (где p1, p2,..., pn – все простые числа) не делится ни на одно простое число p1, p2,..., pn и, потому либо само N, либо один из его простых множителей должен быть простым числом, отличным от p1, p2,..., pn. Следовательно, p1, p2,..., pn не может быть полным перечнем всех простых чисел.