Также по теме

ТЯГОТЕНИЕ

ТЯГОТЕНИЕ (ГРАВИТАЦИЯ), свойство материи, которое состоит в том, что между любыми двумя частицами существуют силы притяжения. Тяготение – универсальное взаимодействие, охватывающее всю доступную наблюдению Вселенную и потому называемое всемирным. Как мы увидим из дальнейшего, тяготение играет первостепенную роль в определении структуры всех астрономических тел во Вселенной, кроме мельчайших. Оно организует астрономические тела в системы, подобные нашей Солнечной системе или Млечному Пути, и лежит в основе структуры самой Вселенной.

Под «силой тяжести» принято понимать силу, создаваемую тяготением массивного тела, а под «ускорением силы тяжести» – ускорение, создаваемое этой силой. (Слово «массивное» употребляется здесь в смысле «обладающее массой», но рассматриваемое тело не обязательно должно обладать очень большой массой.) В еще более узком смысле под ускорением силы тяжести понимают ускорение тела, свободно падающего (без учета сопротивления воздуха) на поверхность Земли. В этом случае, поскольку вся система «Земля плюс падающее тело» вращается, в действие вступают силы инерции. Центробежная сила противодействует гравитационной силе и уменьшает эффективный вес тела на малую, но доступную измерению величину. Этот эффект падает до нуля на полюсах, через которые проходит ось вращения Земли, и достигает максимума на экваторе, где поверхность Земли отстоит от оси вращения на наибольшее расстояние. В любом локально проведенном эксперименте действие этой силы неотличимо от истинной силы тяжести. Поэтому под выражением «сила тяжести на поверхности Земли» обычно понимается совместное действие истинной силы тяжести и центробежной реакции. Термин «сила тяжести» удобно распространить и на другие небесные тела, говоря, например, «сила тяжести на поверхности планеты Марс».

Ускорение силы тяжести на поверхности Земли составляет 9,81 м/с2. Это означает, что любое тело, свободно падающее вблизи поверхности Земли, увеличивает свою скорость (ускоряется) на 9,81 м/с за каждую секунду падения. Если тело начинало свободное падение из состояния покоя, то к концу первой секунды оно будет иметь скорость 9,81 м/с, к концу второй – 18,62 м/с и т.д.

Тяготение как важнейший фактор структуры Вселенной.

В структуре окружающего нас мира тяготение играет чрезвычайно важную, фундаментальную роль. По сравнению с электрическими силами притяжения и отталкивания между двумя заряженными элементарными частицами тяготение очень слабо. Отношение электростатической силы к гравитационной, действующей между двумя электронами, составляет около 4Ч1046, т.е. 4 с 46 нулями. Причина, по которой столь большой разрыв по величине не обнаруживается на каждом шагу в повседневной жизни, заключается в том, что преобладающая часть вещества в своей обычной форме электрически почти нейтральна, поскольку число положительных и отрицательных зарядов в его объеме одинаково. Поэтому огромные электрические силы объема просто не имеют возможности полностью развиться. Даже в таких «фокусах», как прилипание потертого воздушного шарика к потолку и вздыбливание волос при их расчесывании в сухой день электрические заряды разделяются лишь незначительно, но этого уже достаточно, чтобы преодолеть силы тяготения. Сила гравитационного притяжения настолько невелика, что измерить ее действие между телами обычных размеров, в лабораторных условиях, удается только при соблюдении особых предосторожностей. Например, сила гравитационного притяжения между двумя людьми массой по 80 кг, стоящих вплотную спиной друг к другу, составляет несколько десятых дины (менее 10–5 Н). Измерения столь слабых сил затрудняются необходимостью их выделения на фоне разного рода посторонних сил, которые могут превышать измеряемую.

По мере увеличения масс гравитационные эффекты становятся все более заметными и в конце концов начинают доминировать над всеми остальными. Представим себе условия, царящие на одном из малых астероидов Солнечной системы – на шаровидной каменной глыбе радиусом 1 км. Сила тяжести на поверхности такого астероида составляет 1/15 000 силы тяжести на поверхности Земли, где ускорение свободного падения равно 9,81 м/с2. Масса, весящая на поверхности Земли одну тонну, на поверхности такого астероида весила бы около 50 г. Скорость отрыва (при которой тело, двигаясь по радиусу от центра астероида, преодолевает созданное последним гравитационное поле) составила бы всего лишь 1,2 м/с, или 4 км/ч (скорость не очень быстро идущего пешехода), так что, гуляя по поверхности астероида, приходилось бы избегать резких движений и не превышать указанную скорость, чтобы не улететь навсегда в космическое пространство. Роль самогравитации растет по мере перехода ко все более крупным телам – Земле, большим планетам, вроде Юпитера, и, наконец, к звездам, например Солнцу. Так, самогравитация поддерживает сферическую форму жидкого ядра Земли и окружающей это ядро ее твердой мантии, как и земную атмосферу. Межмолекулярные силы сцепления, удерживающие вместе частицы твердых тел и жидкостей, в космических масштабах уже не эффективны, и только самогравитация позволяет существовать как единому целому таким гигантским газовым шарам, как звезды. Без гравитации этих тел просто не было бы, как не было бы и миров, пригодных для жизни.

При переходе к еще бóльшим масштабам гравитация организует отдельные небесные тела в системы. Размеры таких систем разные – от сравнительно небольших (с астрономической точки зрения) и простых систем, как, например, система Земля – Луна, Солнечная система и двойные или кратные звезды, до насчитывающих сотни тысяч звезд больших звездных скоплений. «Жизнь», или эволюцию, отдельного звездного скопления можно рассматривать как балансирование между взаимным расхождением звезд и тяготением, которое стремится удержать скопление как единое целое. Время от времени какая-нибудь звезда, двигаясь в направлении других звезд, приобретает от них импульс и скорость, позволяющие ей вылететь из скопления и навсегда покинуть его. Оставшиеся звезды образуют еще более тесное скопление, и тяготение связывает их еще сильнее, чем прежде. Тяготение помогает также удерживаться вместе в космическом пространстве газовым и пылевым облакам, а иногда даже сжимает их в компактные и более или менее шарообразные сгустки материи. Темные силуэты многих таких объектов можно наблюдать на более ярком фоне Млечного Пути. Согласно принятой сегодня теории формирования звезд, если масса такого объекта достаточно велика, то давление в его недрах достигает уровня, при котором становятся возможными ядерные реакции, и плотный сгусток материи превращается в звезду. Астрономам удалось получить снимки, подтверждающие образование звезд в тех местах космического пространства, где ранее наблюдались только облака материи, что свидетельствует в пользу существующей теории.

Тяготение играет важнейшую роль во всех теориях происхождения, развития и строения Вселенной в целом. Почти все они опираются на общую теорию относительности. В этой теории, созданной Эйнштейном в начале 20 в., тяготение рассматривается как свойство четырехмерной геометрии пространства-времени, как нечто подобное кривизне сферической поверхности, обобщенной на большее число измерений. «Искривленность» пространства-времени тесно связана с распределением находящейся в нем материи.

Во всех космологических теориях принимается, что тяготение – свойство любого вида материи, проявляющееся повсюду во Вселенной, хотя отнюдь не предполагается, что создаваемые тяготением эффекты везде одни и те же. Например, гравитационная постоянная G (о которой мы расскажем дальше) в зависимости от места и времени может изменяться, хотя прямых данных наблюдения, которые подтверждали бы это, пока нет. Гравитационная постоянная G – одна из физических констант нашего мира, равно как скорость света либо электрический заряд электрона или протона. С той точностью, с которой позволяют измерить эту постоянную современные экспериментальные методы, ее значение не зависит от того, какой разновидностью материи создано тяготение. Существенна только масса. Массу можно понимать двояко: как меру способности притягивать другие тела, – это свойство имеют в виду, когда говорят о тяжелой (гравитационной) массе, – или как меру сопротивления тела попыткам его ускорить (привести в движение, если тело покоится, остановить, если тело движется, или изменить его траекторию), – это свойство массы имеют в виду, когда говорят об инертной массе. Интуитивно эти две разновидности массы не кажутся одним и тем же свойством материи, однако общая теория относительности постулирует их тождество и строит картину мира, исходя из этого постулата. См. также МАССА.

Тяготение имеет и еще одну особенность; по-видимому, не существует никакого мыслимого способа избавиться от эффектов гравитации, кроме как удалиться на бесконечно большое расстояние от всякой материи. Ни одно известное вещество не обладает отрицательной массой, т.е. свойством быть отталкиваемым полем тяготения. Даже антиматерия (позитроны, антипротоны и т.п.) имеет положительную массу. От гравитации невозможно избавиться с помощью некоего экрана, как от электрического поля. Во время лунных затмений Луна «заслоняется» Землей от притяжения Солнца, и эффект от такой экранировки накапливался бы от одного затмения к другому, но этого нет.

История представлений о тяготении.

Как показано выше, тяготение – одно из наиболее распространенных взаимодействий материи с материей и в то же время одно из наиболее таинственных и загадочных. К объяснению феномена тяготения современные теории сколько-нибудь существенно не приблизились.