ТЕЛЕМЕТРИЯ

ТЕЛЕМЕТРИЯ, техника измерений на расстоянии. Телеметрия позволяет удовлетворить весьма важную потребность ученого, инженера, медицинского эксперта или иного пользователя в данных об удаленных объектах.

Области применения.

В качестве одного из важных применений телеметрии можно назвать летные испытания новой модели самолета или другого летательного аппарата. Для оценки работоспособности конструкции и летных характеристик самолета нужно измерять расход топлива, характеристики работы двигателей, механические нагрузки, испытываемые фюзеляжем и крыльями, вибрации и температуры критически важных элементов летательного аппарата, параметры электронного оборудования самолета, траекторные данные. Средства телеметрии следят за измерениями во множестве точек, число которых составляет от нескольких сотен до нескольких тысяч, и предоставляют результаты измерений конструкторам на их наземные компьютеры или дисплейные терминалы. См. также АЭРОДИНАМИКА; АЭРОКОСМИЧЕСКИХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ КОНСТРУИРОВАНИЕ.

Система телеметрии космического летательного аппарата может обеспечить получение важных научных данных о поверхности, атмосфере или электромагнитном поле планет, а также следить за состоянием здоровья космонавтов. См. также ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ; КОСМОСА ИССЛЕДОВАНИЕ И ИСПОЛЬЗОВАНИЕ.

Некоторые зоны электроэнергетических установок и станций (особенно атомных) небезопасны для людей; вместе с тем параметры их рабочих режимов (такие, как температура, давление, расход охладителя) имеют критически важное значение для оценки режима работы и безопасности станции. Средства телеметрии в таких системах непрерывно следят за режимом работы и передают результаты измерений на дисплейные терминалы операторов станции. См. также АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ И РЕГУЛИРОВАНИЕ; ЭЛЕКТРИЧЕСКАЯ ЭНЕРГИЯ.

Во многих больницах осуществляется непрерывный контроль за состоянием больных с сердечной недостаточностью или с другими тяжелыми заболеваниями. Чтобы избежать необходимости иметь специалиста-медика у каждой койки, каждому больному устанавливают миниатюрный телеметрический передатчик, и за всеми больными ведется непрерывное наблюдение из одного места. См. также БИОЭЛЕКТРИЧЕСТВО; СЕРДЦЕ.

На месте, где произошел несчастный случай, группа медиков, приехавшая на машине скорой помощи, может установить привезенные с собой средства телеметрии. Благодаря этим средствам медицинские эксперты, находящиеся в травматологическом центре, получают возможность следить за критически важными измерениями и консультировать медперсонал, оказывающий первую помощь на месте происшествия и подготавливающий больного к транспортировке в больницу.

Стандарты.

Наиболее сложные современные системы телеметрии используются в аэрокосмических исследованиях. Чтобы достичь некоторого уровня стандартизации, испытательные полигоны стремятся придерживаться системы стандартов, разработанных Межведомственной комиссией по измерительным средствам (IRIG).

Измерительные преобразователи.

Результаты непосредственных измерений (температуры, давления, нагрузки, ускорения и т.д.) преобразуются в пропорциональное электрическое напряжение. К числу часто применяемых датчиков относятся датчики (преобразователи) давления и расхода, термопары, термометры сопротивления, мосты и потенциометры (см. также ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ; ТЕРМОЭЛЕКТРИЧЕСТВО). В типичную телеметрическую систему входит несколько разновидностей формирователей сигналов, каждый из которых используется для преобразования выходного сигнала того или иного конкретного преобразователя в стандартный сигнал напряжения от 5 до 10 В.

Мультиплексор.

Система телеметрии воспринимает и ретранслирует электрические сигналы от многих датчиков одновременно благодаря процессу уплотнения данных, называемому мультиплексированием. В стандарте IRIG приняты три способа уплотнения данных: амплитудно-импульсная модуляция (АИМ), частотная модуляция (ЧМ) и импульсно-кодовая модуляция (ИКМ). ИКМ до сих пор является наиболее распространенной благодаря характерной для нее низкой вероятности ошибок (обычно менее 0,25% для любого измерения). ИКМ-система преобразует результат каждого измерения, выраженный аналоговым значением напряжения, в приемлемое для компьютера цифровое значение. В системе с использованием, например, 12-разрядных двоичных чисел самое малое напряжение будет представлено кодовым числом 000 000 000 000 (0), а самое большое – 111 111 111 111 (2047). Для подачи сигнала о начале каждого нового цикла сканирования датчиков и преобразователей генерируется специальная кодограмма.