Также по теме

ТРАНЗИСТОР

ТРАНЗИСТОР, полупроводниковый прибор, предназначенный для усиления электрического тока и управления им. Транзисторы выпускаются в виде дискретных компонентов в индивидуальных корпусах или в виде активных элементов т.н. интегральных схем, где их размеры не превышают 0,025 мм. В связи с тем что транзисторы очень легко приспосабливать к различным условиям применения, они почти полностью заменили электронные лампы. На основе транзисторов и их применений выросла широкая отрасль промышленности – полупроводниковая электроника (см. также ЭЛЕКТРОВАКУУМНЫЕ И ГАЗОРАЗРЯДНЫЕ ПРИБОРЫ; ИНТЕГРАЛЬНАЯ СХЕМА; ПОЛУПРОВОДНИКОВЫЕ ЭЛЕКТРОННЫЕ ПРИБОРЫ; ФИЗИКА ТВЕРДОГО ТЕЛА). Одно из первых промышленных применений транзистор нашел на телефонных коммутационных станциях. Первым же товаром широкого потребления на транзисторах были слуховые аппараты, появившиеся в продаже в 1952. Сегодня транзисторы и многотранзисторные интегральные схемы используются в радиоприемниках, телевизорах, магнитофонах, детских игрушках, карманных калькуляторах, системах пожарной и охранной сигнализации, игровых телеприставках и регуляторах всех видов – от регуляторов света до регуляторов мощности на локомотивах и в тяжелой промышленности. В настоящее время «транзисторизованы» системы впрыска топлива и зажигания, системы регулирования и управления, фотоаппараты и цифровые часы. Наибольшие изменения транзистор произвел, пожалуй, в системах обработки данных и системах связи – от телефонных подстанций до больших ЭВМ и центральных АТС. Космические полеты были бы практически невозможны без транзисторов. В области обороны и военного дела без транзисторов не могут обходиться компьютеры, системы передачи цифровых данных, системы управления и наведения, взрыватели, радиолокационные системы, системы связи и разнообразное другое оборудование. В современных системах наземного и воздушного наблюдения, в ракетных войсках – всюду применяются полупроводниковые компоненты. Перечень видов применения транзисторов почти бесконечен и продолжает увеличиваться. См. также КОМПЬЮТЕР;; РАКЕТНОЕ ОРУЖИЕ.

В 1954 было произведено немногим более 1 млн. транзисторов. Сейчас эту цифру невозможно даже указать. Первоначально транзисторы стоили очень дорого. Сегодня транзисторные устройства для обработки сигнала можно купить за несколько центов.

Историческая справка.

Объем исследований по физике твердого тела нарастал с 1930-х годов, а в 1948 было сообщено об изобретении транзистора. За созданием транзистора последовал необычайный расцвет науки и техники. Был дан толчок исследованиям в области выращивания кристаллов, диффузии в твердом теле, физики поверхности и во многих других областях. Были разработаны разные типы транзисторов, среди которых можно назвать точечный германиевый и кремниевый с выращенными переходами, полевой транзистор (ПТ) и транзистор со структурой металл – оксид – полупроводник (МОП-транзистор). Были созданы также устройства на основе интерметаллических соединений элементов третьего и пятого столбцов периодической системы Менделеева; примером может служить арсенид галлия (см. также ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ). Наиболее распространены планарные кремниевые, полевые и кремниевые МОП-транзисторы. Широко применяются также такие разновидности транзистора, как триодные тиристоры и симисторы, которые играют важную роль в технике коммутации и регулировании сильных токов.

ТЕОРИЯ ПОЛУПРОВОДНИКОВ

Действие электронных ламп основано на управлении током электронов, идущих от нагреваемого электрода (катода) к собирающему электроду (аноду). Катод нагревается отдельным нагревательным элементом. Для работы такого устройства требуется значительное количество электроэнергии.

В полупроводниках не нужно подводить энергию к нагревателю, чтобы получить свободные электроны, а собирающие электроды могут работать при весьма низких напряжениях.

Сопротивление полупроводников можно контролируемо изменять. Это осуществляется путем легирования полупроводника другими химическими элементами. Более того, выбирая тот или иной материал для легирования, можно задавать нужный вид носителей электрического заряда (положительные или отрицательные). Поясним эту мысль.

Все химические элементы, встречающиеся в природе, можно расположить в последовательный ряд по числу положительных зарядов, начиная с водорода, имеющего один положительный заряд в ядре атома (заряд одного протона), и кончая ураном с 92 протонами. Положительный заряд ядра компенсируется оболочками окружающих его электронов (рис. 1). Электроны внутренних оболочек довольно прочно связаны с ядром. Электроны же наружной оболочки связаны слабее; в качестве валентных электронов они могут участвовать в химических процессах, а в качестве электронов проводимости – переносить электрический заряд (электрический ток в металлах есть поток электронов). В таких металлах, как медь, электроны внешних оболочек практически свободны и под влиянием очень слабого электрического поля способны переносить колоссальные токи. Внешние электроны в диэлектриках связаны прочно, поэтому диэлектрики практически не проводят электричества. Полупроводники – это промежуточный случай. Согласно фундаментальному постулату физики, называемому уравнением Больцмана, число N частиц с энергией дается формулой

N = A exp [–E/kT],

где A – константа, характеризующая материал, k – постоянная Больцмана (= 8,6Ч10–5 эВ/К), а T – абсолютная температура в кельвинах (К). Отсюда видно, что чем прочнее связь и ниже температура, тем меньше освобождается электронов. Если в кремний, который четырехвалентен, ввести фосфор, сурьму или мышьяк, каждый атом которых имеет пять валентных электронов, то один электрон легирующей примеси будет лишним. Этот избыточный электрон связан слабо и легко может действовать как электрон проводимости. Если же в кремний ввести бор, галлий или алюминий, каждый атом которых имеет три валентных электрона, то для образования всех связей будет недоставать одного электрона. В этом случае перенос тока определяется электронными вакансиями, или «дырками». На самом деле электроны под влиянием электрического поля перескакивают от одной вакантной связи к другой, что можно рассматривать как перемещение дырок в противоположном направлении. Электрический ток при этом направлен так же, как и в случае электронов, но по величине он меньше (у электронных «дырок» противоположный знак заряда и меньшая подвижность). В соответствии с законом np = N 2 можно произвольно изменять число электронов n или дырок p в единице объема полупроводника, задавая нужное число избыточных доноров или акцепторов электронов. Полупроводники, в которых электронов больше, чем дырок, называются полупроводниками n-типа, а полупроводники, в которых больше дырок, – полупроводниками p-типа. Те носители, которых больше, называются основными носителями, а которых меньше – неосновными. Граница, отделяющая в кристалле область p-типа от области n-типа, называется p-n-переходом.

      Рис. 1. ЭЛЕКТРОННЫЕ ОБОЛОЧКИ атома кремния, типичного полупроводникового материала. В образовании химических связей и в процессе проводимости могут участвовать только четыре электрона внешней оболочки (темные кружки), называемые валентными электронами. Десять внутренних электронов (светлые кружки) в таких процессах не принимают участия.