Энциклопедия Кругосвет
Энциклопедия Кругосвет
Универсальная научно-популярная энциклопедия

ИСТОРИЯ и ОБЩЕСТВО

  • Экономика и Право
  • Психология и Педагогика
  • Социология
  • Философия
  • Религия
  • Народы и Языки
  • Государство и Политика
  • Военное дело
  • Археология
  • История
  • Лингвистика

ПУТЕШЕСТВИЯ и ГЕОГРАФИЯ

  • География
  • Геология
  • Страны мира

ИСКУССТВО и КУЛЬТУРА

  • Живопись и Графика
  • Скульптура
  • Архитектура
  • Декоративно-прикладное искусство
  • Дизайн и Фотография
  • Литература
  • Музыка
  • Театр и Кино
  • Эстрада и Цирк
  • Балет

НАУКА и ТЕХНИКА

  • Авиация и Космонавтика
  • Астрономия
  • Биология
  • Военная техника
  • Математика
  • Технология и Промышленность
  • Транспорт и Связь
  • Физика
  • Химия
  • Энергетика и Строительство

ЗДОРОВЬЕ и СПОРТ

  • Медицина
  • Спорт

АВИАЦИЯ ГРАЖДАНСКАЯ

Содержание статьи
  • АВИАТРАНСПОРТНОЕ ПРЕДПРИЯТИЕ
  • Управление авиатранспортным предприятием и экономика.
  • Служащие авиатранспортного предприятия.
  • Пилот.
  • Борт-инженер.
  • Штурман.
  • Обслуживающий персонал.
  • Наземный персонал.
  • Авиадиспетчеры.
  • Авиамеханики.
  • Инженер.
  • ИНЖЕНЕРНО-ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ
  • Наземное оборудование.
  • Профилактические проверки.
  • ТРАНСПОРТНЫЕ СРЕДСТВА
  • ЛЕТНО-ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
  • Конструкция.
  • Воздушные трассы.
  • УПРАВЛЕНИЕ ВОЗДУШНЫМ ДВИЖЕНИЕМ
  • Автоматизация посадки.
  • Радиомаяк.
  • Всенаправленный пеленгатор.
  • Радиокомпас.
  • Посадка по приборам.
  • Инструментальная система посадки.
  • Система захода на посадку по командам с земли.
  • Бортовая РЛС.
  • Глобальная навигационная спутниковая система.
  • «Свободный полет».

АВИАЦИЯ ГРАЖДАНСКАЯ, вид транспорта, осуществляющего перевозки пассажиров, багажа, грузов и почты с помощью летательных аппаратов. Обычно этот термин используется в авиации для описания регулярной деятельности авиатранспортных предприятий, имеющих соответствующий сертификат (авиакомпаний). Этот термин может использоваться также для описания других видов коммерческой деятельности авиационного предприятия, таких, как чартерные рейсы, авиатакси, нерегулярные и дополнительные рейсы. Регулярные (по расписанию) рейсы воздушного транспорта образуют основную часть коммерческих операций, осуществляемых авиатранспортным предприятием, и в настоящей статье им уделяется главное внимание.

АВИАТРАНСПОРТНОЕ ПРЕДПРИЯТИЕ

Также по теме:
АВИАЦИЯ ВОЕННАЯ
АВИАЦИЯ ВОЕННАЯ

Основой работы авиатранспортного предприятия является использование квалифицированным персоналом современного авиационного оборудования с целью эффективного и безопасного осуществления транспортных услуг, оцениваемых в пассажиро-километрах (в тонно-километрах, если речь идет о грузовых перевозках). Основной задачей авиатранспортного предприятия является быстрая, безопасная и эффективная воздушная перевозка пассажиров или грузов. Поэтому у такого предприятия должны быть по меньшей мере один самолет, один механик, один пилот и один собственник. В 1920-х годах многие авиатранспортные предприятия ограничивались именно этим. Сформулированные выше требования остаются в силе для каждого из авиапредприятий даже сегодня, хотя со временем последние настолько разрослись, что включают в себя целые флотилии воздушных судов, отделы технического обслуживания с большим штатом авиамехаников, многочисленный летный состав (летчики и экипажи), а также административный аппарат. Все остальные функции являются вспомогательными; они призваны повысить эффективность выполнения основного назначения авиапредприятия. Число подразделений или области специализации той или иной авиакомпании определяются масштабами и уровнем сложности предприятия.

Управление авиатранспортным предприятием и экономика.

Структура управления авиапредприятием заметно изменилась со времени зарождения авиации. Ранее администраторы одновременно исполняли обязанности пилота и были опытными механиками. По мере роста и расширения авиапредприятий все более значимыми становились финансовые аспекты, и администраторам пришлось сосредоточиться на финансовой, юридической и административной деятельности. В наши дни руководство авиапредприятия сталкивается с множеством самых различных и сложных проблем. Детально регламентируемая правительством, деятельность авиапредприятий в условиях рыночной экономики должна обеспечивать высокую рентабельность и конкурентоспособность. Авиакомпании работают во множестве стран по всему миру, и их деятельность затрагивает международные отношения. Вместе с тем имеется целый ряд факторов, предполагающих соблюдение жестких стандартов и функционирование в строгом соответствии с централизованным контролем со стороны руководства. Масштабы современных авиапредприятий способствовали специализации многих менеджерских функций. В основные обязанности руководства авиапредприятия входят составление расписаний, планирование и организация перевозок и эксплуатация парка воздушных судов. Все эти обязанности руководство авиапредприятия выполняет с учетом экономических факторов (таких, как финансовые средства, цены, рентабельность), чтобы обеспечить для компании максимальную прибыль.

Служащие авиатранспортного предприятия.

Также по теме:
МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ГРАЖДАНСКОЙ АВИАЦИИ, ИКАО
МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ГРАЖДАНСКОЙ АВИАЦИИ, ИКАО

Авиапредприятиями, а в некоторых вопросах и государственными предписаниями устанавливаются определенные требования, связанные с квалификацией, опытом и образованием служащих. Правила сертификации квалификации распространяются на авиамехаников, пилотов, бортинженеров, штурманов, авиадиспетчеров и работников ФАА, осуществляющих управление воздушным движением.

Пилот.

В разных авиакомпаниях предполагается различный уровень предшествующего летного опыта. Однако инструкция ФАА в части 121 (правила ФАА для самолетов на 30 и более пассажиров) требует, чтобы общий налет пилота составлял не менее 1500 ч и по крайней мере 250 ч из них в качестве пилота. Пилоты должны сдать письменный экзамен, удостоверяющий знание ими самолета, метеорологии, навигации, радиосвязи и других вопросов, относящихся к эксплуатации самолетов гражданской авиации. Кроме того, они должны продемонстрировать свое летное искусство эксперту ФАА (или назначенному ФАА экзаменатору), выполняя различные виды взлета и посадки, летные маневры и процедуры выхода из критических ситуаций на самолете либо на пилотажном стенде. Они должны проходить как медицинское обследование перед получением удостоверения пилота, так и ежегодное освидетельствование после этого. Предусмотрены ежегодные курсы по повышению квалификации пилотов.

Борт-инженер.

Также по теме:
АЭРОКОСМИЧЕСКИХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ КОНСТРУИРОВАНИЕ
АЭРОКОСМИЧЕСКИХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ КОНСТРУИРОВАНИЕ

Штат борт-инженеров пополняется авиапредприятиями из двух источников. Одним из них являются работники отдела технического обслуживания самолетов, среди которых имеются дипломированные специалисты по обслуживанию самолетов и двигателей. Другим источником являются лица с летным опытом, которые ранее работали в другом месте. В том и в другом случае будущий борт-инженер должен сдать государственный экзамен и получить диплом борт-инженера.

Штурман.

Лишь очень немногих работников авиакомпаний можно отнести исключительно к категории штурманов. Опыт таких людей в наши дни используется на трансокеанских маршрутах и при дальних перелетах над сушей, где оказывается недостаточно имеющихся средств радионавигации. Большинство штурманов – это вторые пилоты, прошедшие обучение, необходимое для исполнения обязанностей штурмана.

Обслуживающий персонал.

На внутренних авиалиниях забота о пассажирах возлагается на стюардесс. На трансокеанских маршрутах компании используют смешанные команды, состоящие не менее чем из 3 или 4 человек, в зависимости от класса самолета и объема предоставляемых услуг. Каждое из авиапредприятий устанавливает свои критерии относительно возраста, веса и внешности стюардов и стюардесс. Новые работники для обслуживания авиапассажиров перед приемом на работу в течение нескольких недель проходят обучение, приобретая опыт по оказанию первой помощи, применению правил безопасности, эксплуатации аварийного оборудования и обслуживанию пассажиров, и только после этого допускаются к работе на самолетах. Подобно летчикам, обслуживающий персонал ежегодно повышает свою квалификацию на соответствующих курсах.

Наземный персонал.

Для наземного персонала предъявляются менее жесткие требования к состоянию здоровья, чем для летного состава; они устанавливаются в соответствии с условиями выполняемой работы. Служащие, занятые работой в офисах, ничем не отличаются от аналогичных служащих в любых других сферах бизнеса. Механики отдела технического обслуживания, принимающие участие в перемещении самолета по территории аэродрома, должны пройти более жесткую проверку, в ходе которой контролируется острота зрения, отсутствие потенциального дальтонизма, а также отсутствие двигательных ограничений.

Авиадиспетчеры.

Работники центра управления полетами отвечают за безопасность каждого полета наравне с командиром экипажа самолета. Они предоставляют экипажу информацию о полете и запасе топлива, принимают необходимые оперативные решения в условиях жесткого лимита времени и, кроме того, заранее планируют программу полетов. Они решают также, как устранить затруднения, связанные с отказом тех или иных механических систем самолета, и как справиться с атмосферными возмущениями. Чтобы диспетчер лучше понимал свои обязанности и задачи, а также проблемы, возникающие при выполнении полетов, он должен принять участие в ряде полетов с экипажами самолетов на обслуживаемых им маршрутах. Как правило, авиадиспетчеры набираются из других отделений авиакомпании, в которых они приобрели знания о проблемах эксплуатации воздушного транспорта и опыт их решения. Квалификация авиадиспетчера, как и пилота, подтверждается удостоверением ФАА.

 NASA Ames Home Page     ЦЕНТР УПРАВЛЕНИЯ ПОЛЕТАМИ аэропорта Хартсфилд (Атланта, США).

Авиамеханики.

Качество профилактического ремонта летательной техники существенно зависит от его исполнителей. Основными требованиями являются знание техники, понимание проблем и умение устранять их. Для выполнения этих важных задач стараются найти работников с «жилкой» механика, прошедших соответствующее обучение и имеющих опыт. После сдачи квалификационных экзаменов им выдается свидетельство авиамеханика по обслуживанию самолетов или силовых установок. Персонал отдела технического обслуживания авиапредприятия может выполнять различные виды технических работ. Это могут быть обязанности аэродромного механика, слесаря или драпировщика и т.д. Установлены определенные квалификационные требования, и, чтобы повысить квалификацию работника в избранном им виде деятельности, проводится соответствующее обучение.

Инженер.

Для инженерного персонала большой авиакомпании характерна высокая степень специализации, и рядовому инженеру нет необходимости разбираться во всех областях авиаинженерной деятельности (конструкторская работа, эксплуатация, ремонт). Инженеров делят на категории в соответствии с полученным ими техническим образованием, приобретенным опытом и специальными знаниями в одной из следующих областей: аэродинамика и летные характеристики; электротехника, радиотехника и электроника; гидравлические системы, системы обогрева и вентиляции; двигатели и вспомогательное оборудование; химия и материаловедение; аэродромное обслуживание; конструирование и некоторые смежные области техники. Желательно, чтобы принимаемые на работу были хотя бы в общих чертах знакомы с инженерным хозяйством авиапредприятия и имели практические знания в этой области.

ИНЖЕНЕРНО-ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

В наземном обслуживании самолета можно выделить три аспекта: техническое обслуживание, профилактический осмотр и ремонт. Согласно определению, к техническому обслуживанию относятся любые операции, производимые с самолетом, двигателем, элементами конструкции и вспомогательными устройствами без полного изъятия из эксплуатации самолета, двигателя, тех или иных элементов или вспомогательных устройств. При этом имеется в виду и любое обслуживание самолета, выполняемое в стояночный период (часто в это понятие включается также замена элементов, которые, вообще говоря, должны быть подвергнуты осмотру перед их вторичной установкой). Капитальный ремонт и профилактический осмотр – это совокупности контрольных и механических операций, которые предполагают изъятие из эксплуатации осматриваемого самолета, двигателей, элементов конструкции или вспомогательных устройств с целью их проверки (профилактический осмотр) и, при необходимости, ремонта. Капитальный ремонт обычно проводят достаточно регулярно, и заканчивается он возвращением в эксплуатацию отремонтированного и проверенного элемента в состоянии, эквивалентном установке нового элемента (с точки зрения надежности в течение времени до следующего профилактического осмотра). «Ремонтом» называют любую механическую операцию незапланированного характера по возвращению в строй того или иного элемента ввиду его неожиданного разрушения или отказа. Разрушение или отказ считаются при этом неожиданными, даже если они происходят регулярно. Длительный ремонт может исключить самолет из эксплуатации на несколько месяцев (например, когда с самолетом случилось значительное аварийное происшествие, но он еще может быть отремонтирован). Таким образом, наземное обслуживание самолета включает в себя профилактические и ремонтные работы.

Наземное оборудование.

Эксплуатация самолета намного упростилась бы, если бы все системы, необходимые для функционирования самолета, запуска двигателя, погрузки и заправки, как и другое вспомогательное оборудование, размещались не на земле, а на борту самолета. Однако обычно это нецелесообразно, так как размещение их на самолете привело бы к увеличению веса и уменьшению полезного объема. Поэтому окончательное решение относительно того, какие функции должны реализовываться «на борту», а какие «на земле», принимается на основании опыта конструирования и эксплуатации самолета как транспортного средства.

Профилактические проверки.

Профилактический осмотр, являющийся частью программы наземного обслуживания самолета, уже обсуждался выше. Однако после того, как тот или иной элемент осмотрен, его необходимо проверить, чтобы быть уверенным, что он функционирует надлежащим образом. Такую проверку следует проводить достаточно часто, поскольку элементы и устройства самолета, как правило, весьма чувствительны к любому изменению условий работы; в некоторых отношениях их можно сравнить со скрипкой, которая всегда нуждается в настройке. Когда в тот или иной элемент системы внесено какое-либо изменение, часто оказывается необходимым испытать всю систему, чтобы убедиться в том, что «настройка» ее не изменилась. С учетом сказанного целесообразно регулярно завершать осмотр процедурой проверки.

Используются специализированные испытательные стенды, позволяющие проверять двигатели на всех режимах, чтобы убедиться, что после их профилактического осмотра и ремонта все функционирует нормально. После того как двигатель снова установлен на самолет, должны быть проведены дополнительные испытания для проверки взаимного влияния двигателя и других систем. Точно такой же подход используется и при испытаниях других самолетных систем.

 Airbus Industries     АЭРОБУС A-340 европейского консорциума «Эрбас индастри» – широкофюзеляжный четырехдвигательный пассажирский самолет. Aeritalia     САМОЛЕТ «БОИНГ-767», представляющий последнее поколение пассажирских самолетов компании «Боинг» – одного из ведущих авиапроизводителей США.

ТРАНСПОРТНЫЕ СРЕДСТВА

Все самолеты, использовавшиеся в прошлом для перевозки грузов, первоначально предназначались и проектировались для пассажирских перевозок. Это обстоятельство не должно вызывать удивления, если учесть огромную стоимость разработки нового самолета и сравнительно небольшой объем грузоперевозок. Современные энтузиасты грузовых перевозок полагают, что самолет, специально спроектированный для перевозки грузов, позволит снизить расценки и удовлетворит потребности предсказываемого ими существенного роста объема перевозки грузов.

ХАРАКТЕРИСТИКИ САМОЛЕТОВ ГРАЖДАНСКОЙ АВИАЦИИ
ХАРАКТЕРИСТИКИ САМОЛЕТОВ ГРАЖДАНСКОЙ АВИАЦИИ
Тип Двигатели Число пассажиров Дальность, км Крейсерская скорость, км/ч Максимальный вес, т
  Число Тяга, кН        
Турбореактивные            
«Эрбас» А300-600 2 262 375 4400–5350 890 165
«Эрбас» А310-300 2 237 280 6900 900 164
«Эрбас» А320-200 2 125 179 4500 800 74
«Эрбас» А340-300 2 139 375 10850 925 254
БАК 111-200 2 46 79 2450 870 36
«Конкорд» (сверхзвуковой) 4 169 132 6550 2150 181
БАК VC10 4 93 135 9350 930 142
БАК «Супер VC10» 4 100 174 7450 975 152
«Боинг» 707-320B 4 80 189 9700 960 148
«Боинг» 737-100 2 62 101 1000 960 49
«Боинг» 737-400 2 98 168 3600 800 63
«Боинг» 737-500 2 89 132 2500 800–910 52
«Боинг» 747-200B 4 244 550 11000 900–940 378
«Боинг» 747-400 4 252 660 12700 910 395
«Боинг» 757-200 2 178 239 5850 850–935 109
«Боинг» 767-300 4 224 269 6000 850 159
«Макдоннелл-Дуглас»            
DC-8-50 4 80 116–176 14000 875 143
DC-8-63 4 84 259 7750 940 160
DC-9-30 2 62 115 2050 910 44
DC-10 3 156 252 4250 1000 175
«Фоккер» F-28 2 41 60 2000 850 26
«Фоккер» 100 2 62 107 2150 750–850 43
«Хокер Сидли Трайдент» 1E 3 51 103 4400 975 61
Ан-72 2 64 — 1000 720 33
Ан-124 «Руслан» 4 230 — 16500 800–850 405
Ан-225 «Мрiя» 6 230 — 14700 700–850 600
Ил-62 4 102 186 6700 900 157
Ил-62М 4 108 168–186 1100 875 165
Ил-86 4 127 350 5800 900–950 210
Ил-96-300 4 157 300 11000 850–900 216
«Локхид» L-1011 3 147 250–340 4850 940 174
Ту-134 2 67 80-86 2000 750–850 48
Ту-144 4 199 150 3500 2200 207
Ту-154 3 93 164–18 3300 850 98
Ту-154М 3 105 164–175 3700 850 100
Ту-204 2 157 214 2500 810–850 93
Як-40 3 15 38 1850 600 14
Як-42 3 64 120 — 810 53
Турбовинтовые            
Ан-24 2 1897* 52 2600 500 27
Ан-22 «Антей» 4 11000 — 3100 550 225
Ил-114 2 1840 60–64 1000 500 21
«Хэндли Пейдж Геральд» 2 1566 50 1650 440 20
«Хокер Сидли» HS-748-2A 2 1696 62 1850 450 20
NAMC YS-11A-200 2 1980 46 1150 475 24
Ту-114 4 11000 170–224 7000 750–850 179
Поршневые            
«Конвэр» 440 2 1880** 44–52 4450 460 22
«Макдоннелл-Дуглас» DC-7C 4 2530 62–99 7450 560 65
«Локхид» 1049G 4 2530 63–89 7450 525 62
* Мощность на валу, кВт.
** Эффективная мощность, кВт.

Следует полагать, что это будет способствовать новым инженерным достижениям в области аэродинамики и силовых установок. Однако и по внешнему облику, и по своим характеристикам такой самолет вряд ли будет заметно отличаться от пассажирских самолетов.

ЛЕТНО-ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Летно-технические характеристики самолетов определяются главным образом их силовыми установками. Со времен братьев Райт в области авиации многократно предпринимались попытки создать мощный, компактный и легкий двигатель, который работал бы надежно и экономично. К 1950 поршневой двигатель достиг предела возможного в летных условиях: он развивал мощность 2600 кВт при удельном весе (отношении веса двигателя к максимальной мощности в киловаттах), равном 0,61. В начале 1950-х годов были созданы усовершенствованные газотурбинные двигатели. Разработаны турбовинтовые двигатели, развивающие мощность 3700 кВт при удельном весе менее 0,3; по размерам они не больше мощных поршневых двигателей. На современных широкофюзеляжных самолетах используются турбореактивные двигатели, которые на крейсерском режиме развивают мощность более 5000 кВт.
См. АВИАЦИОННАЯ СИЛОВАЯ УСТАНОВКА.

Появление газотурбинных двигателей завершило период сравнительно медленного процесса совершенствования силовых установок летательных аппаратов и привело к поистине революционным изменениям. Скорость, габариты и грузоподъемность самолетов сразу возросли почти вдвое по сравнению с самолетами предшествующего поколения. Реактивный транспорт стал использоваться на маршрутах не только большой, но и малой дальности. Применение двухконтурных и турбовентиляторных двигателей с лучшими мощностными характеристиками при более высокой топливной эффективности сделало возможным использование реактивной авиации и на авиалиниях средней дальности. Турбовинтовые двигатели, обладающие существенно лучшими тяговыми характеристиками на малых скоростях, нашли широкое применение на самолетах местных авиалиний.

Современные пассажирские турбореактивные самолеты могут развить в полете скорость, превышающую 960 км/ч (скорость звука на высоте крейсерского полета составляет приблизительно 1060 км/ч). Они могут также длительное время лететь на большой высоте, что обеспечивает заметную экономию топлива. Обычно высота полета составляет от 7,5 до 12,5 км, в зависимости от веса самолета и требований полета. Расход топлива большого самолета с 4 двигателями составляет от 7 до 10 л на километр полета, и для выполнения дальнего рейса может понадобиться более 60 000 л (около 45 т) топлива. При столь большом взлетном весе для дальнего магистрального самолета требуются очень прочные рулежные дорожки и достаточно длинная взлетная полоса, обеспечивающая разгон самолета до скорости 240 или 260 км/ч, чтобы он мог оторваться от земли.

 WOODFIN CAMP, Jacques Lowe     «ФАЛЬКОН-20» – популярный административный турбореактивный самолет фирмы «Дассо» (Франция). AP/WIDE WORLD, Nick Ut     МАГИСТРАЛЬНЫЙ ПАССАЖИРСКИЙ САМОЛЕТ MD-11 (фирма «Макдоннелл-Дуглас) с тремя реактивными двигателями в первом испытательном полете (1990).

Конструкция.

Возможность достижения больших скоростей полета определяется не только высокими характеристиками турбореактивных двигателей, но и аэродинамической компоновкой самолета, спроектированного и изготовленного на основе новейших достижений в области аэродинамики, материаловедения и прочности.

Современная топливная система самолета обеспечивает безостановочную подачу больших объемов топлива при любых условиях полета. На таких самолетах, как «Боинг» 707 или DC-8, имеются встроенные в крыло топливные баки, которые вмещают более 85 000 л топлива. На таких самолетах установлены также мощные насосы, которые во время взлета подают топливо в двигатели с расходом 800 л/мин и более. Насосы большой мощности используются и на земле. Чтобы загрузить топливом большой самолет за 30–40 мин, необходимо, чтобы насосы перекачивали от 2000 до 2400 л/мин.

Воздушные трассы.

Многие годы любая статья о воздушном транспорте или о воздушных трассах сопровождалась географической картой с изображенными на ней воздушными трассами в границах какого-либо региона, страны или во всем мире. В наши дни такие карты представляют собой сложные и запутанные схемы пересекающихся друг с другом внутренних и международных авиалиний. Схемы железнодорожных маршрутов или линий метрополитена могут воспроизводиться из года в год, так как география этих маршрутов меняется медленно. Схемы же воздушных трасс всегда приближенны и быстро реагируют на изменение экономической конъюнктуры.

УПРАВЛЕНИЕ ВОЗДУШНЫМ ДВИЖЕНИЕМ

Автоматизация посадки.

До конца 1920-х годов полеты, как правило, осуществлялись в условиях прямой видимости земли. Если погода портилась настолько, что пилот не мог видеть землю, полет просто откладывался. Совершенствование радионавигационных средств и приборного оборудования самолета позволило ввести в практику так называемые «полеты по приборам». Вместе с тем до конца 1960-х годов считалось необходимым, чтобы пилот мог видеть землю при посадке на последних ста метрах высоты. Пилотируя магистральный пассажирский самолет, пилоты, как и военные летчики, руководствуются в своих действиях инструкциями, получаемыми из центра управления воздушным движением. Среди прочего указывается высота, на которой должен лететь самолет, чтобы исключить возможность столкновения в воздухе с другим самолетом.

Работу средств радионавигации, предназначенных для управления полетом самолета, можно понять, разобравшись в принципах действия трех основных систем: радиомаяка, всенаправленного пеленгатора и радиокомпаса.

Радиомаяк.

Системы управления полетом и заходом на посадку используют систему стационарных радиомаяков, размещенных в контрольных точках вдоль маршрутов воздушного движения и в аэропортах. Радиомаяк посылает сигналы, которые могут быть приняты летчиком, если он настроится на соответствующую радиочастоту. Эти сигналы периодически сменяются опознавательными сигналами, обеспечивающими надежную идентификацию данного радиомаяка. Характеристики сигналов зависят от участка маршрута, на котором находится самолет. Например, интенсивность сигналов изменяется в зависимости от удаленности самолета от радиомаяка. Благодаря этому летчик может направлять свой самолет по нужному маршруту.

Всенаправленный пеленгатор.

Пилот получает информацию о направлении, в котором находится радиостанция, передающая сигнал, от всенаправленного пеленгатора. Соответствующий индикатор на приборной панели указывает летчику его азимут относительно станции. Важным элементом всенаправленного пеленгатора является дальномерная аппаратура, которая измеряет расстояние от самолета до радиостанции, что в совокупности с азимутом, полученным от пеленгатора, позволяет летчику точно определить свое положение.

Радиокомпас.

Действие этого стандартного навигационного устройства, используемого на многих транспортных средствах, основывается на том, что проволочная рамка оказывается чрезвычайно чувствительной к воздействию радиоволн. Когда плоскость рамки образует угол 90° с линией, идущей от радиомаяка, интенсивность принимаемого сигнала минимальна. Если же повернуть рамку вокруг своей оси на угол 90°, то сигнал усилится до максимального. Это физическое явление лежит в основе работы автоматического радиокомпаса, индикатор которого на приборной панели в кабине пилота указывает направление на источник радиосигналов.
См. также АЭРОНАВИГАЦИЯ.

Посадка по приборам.

При выполнении посадки по приборам в условиях отсутствия прямой видимости взлетно-посадочной полосы необходимо иметь по крайней мере три системы: инструментальную систему посадки (систему ILS), систему захода на посадку по командам с земли и бортовую радиолокационную станцию (РЛС).

АВТОМАТИЗИРОВАННАЯ ПОСАДКА САМОЛЕТА. Если индикаторная стрелка автоматического радиокомпаса показывает «6 ч», то самолет движется к аэропорту. Пилот знает, что он попал на посадочную глиссаду, если пунктирные линии индикатора ИЛС сливаются со сплошными. После этого пилот направляет самолет вниз по глиссаде снижения к началу взлетно-посадочной полосы.

Инструментальная система посадки.

При использовании ILS радиомаяк, расположенный в начале взлетно-посадочной полосы, направляет луч навстречу самолету вдоль посадочной глиссады. При этом приборы на борту самолета укажут летчику, где он находится: выше, ниже, слева, справа или точно на глиссаде снижения (см. рисунок).

Система захода на посадку по командам с земли.

Эта система позволяет оператору аэропорта управлять движением самолета в процессе посадки. На экране своего радиолокатора оператор видит, где располагаются все самолеты, находящиеся в зоне действия системы захода на посадку. Эта информация используется оператором для того, чтобы помочь пилоту самолета строго соблюдать курс и правильную высоту, оставаясь на посадочной глиссаде. Как правило, пилот продолжает использовать свою систему ILS с целью дополнительного контроля.

Бортовая РЛС.

Для определения действительной высоты полета самолета над землей может использоваться радиовысотомер. Метеорадиолокатор позволяет самолету обойти зону грозовой активности и обнаруживать курсовые наземные ориентиры, необходимые для визуальной навигации. Самолеты гражданской авиации оборудованы приемоответчиками, т.е. бортовыми устройствами, которые, получив радиосигналы от центров управления полетом, мгновенно переизлучают их обратно, так что на экранах РЛС центра управления появляются изображение самолета и данные о его пространственном положении.

В 1990-х годах авиакомпании США и ФАА ввели в эксплуатацию новые средства управления воздушным движением, которые позволили повысить эффективность и производительность системы управления воздушным движением и увеличить число обслуживаемых самолетов. К ним относятся, в первую очередь, глобальная навигационная спутниковая система и программное обеспечение «свободного полета».

Глобальная навигационная спутниковая система.

Размещение сети спутников на околоземных орбитах дает возможность летчикам гражданской авиации определять местоположение своих самолетов в любой точке земного шара. Глобальная навигационная спутниковая система GPS включает в себя 24 спутника, которые излучают кодированные сигналы; положение спутников в пространстве точно известно. Принимая сигналы от трех или большего числа спутников одновременно, бортовой компьютер самолета определяет свое местоположение. Эта система обеспечивает навигационное сопровождение самолета в тех районах земного шара, которые недоступны для РЛС и других традиционных средств навигации. Она также помогает осуществлять посадку самолетов в аэропортах в условиях тумана и других факторов плохой погоды.

«Свободный полет».

Под «свободным полетом» понимается предоставление пилоту большей свободы в выборе маршрута, высоты и скорости полета в крейсерском режиме. Ранее пилоты были обязаны выполнять инструкции ФАА по управлению воздушным движением, в соответствии с которыми самолет иногда был вынужден лететь по неоптимальному маршруту или на неоптимальной высоте. В рамках программы «свободного полета», которую ФАА начало внедрять в середине 1990-х годов, пилоты сообщают диспетчерам системы управления воздушным движением ФАА о своих намерениях относительно выбранного маршрута и высоты полета, а система УВД осуществляет непрерывное слежение за их самолетами. Дополнительную безопасность полета обеспечивает система оповещения пилота об опасном сближении и предупреждения столкновения самолетов в воздухе.

Также по теме:
АЭРОНАВИГАЦИЯАЭРОПОРТАвиация и КосмонавтикаТехнология и ПромышленностьТранспорт и Связь

Литература:

Белогородский С.Л. Автоматизация управления посадкой самолета. М., 1972
Яковлев А.С. Советские самолеты. М., 1982
Радиолокационная радиосвязь. М., 1990
Эксплуатация аэродромов. М., 1990

Разделы энциклопедии
-A +A
Проверь свои знания!
Ответь на вопросы викторины

Древний мир

Пройти тест

Псевдонимы...

Пройти тест

Архитектурные сооружения

Пройти тест

Философия

Пройти тест
Ещё тесты
  • Тесты
  • Правила
  • Авторы
  • О проекте
  • Контакты
© 1997-2025 Универсальная научно-популярная энциклопедия Кругосвет