Также по теме

КОСМИЧЕСКИЙ ЗОНД

КОСМИЧЕСКИЙ ЗОНД, автоматический космический аппарат для прямого изучения объектов Солнечной системы и пространства между ними. Космические зонды проводят исследования планет, пролетая мимо них, двигаясь вокруг них по орбите, влетая в их атмосферу или достигая их поверхности. Прямые исследования далеких объектов с помощью приборов, установленных на космических зондах, дополняются наблюдениями с поверхности Земли и ее искусственных спутников.

Космические зонды могут сделать то, что недоступно приборам на Земле или на околоземной орбите: они могут получить изображения далеких объектов с близкого расстояния, измерить электромагнитные поля вокруг них, проделать прямой физический и химический анализ их атмосферы и поверхности, провести сейсмические исследования. В этой статье рассказано о развитии техники космического зондирования, а научные результаты описаны в статьях Энциклопедии Кругосвет: СОЛНЕЧНАЯ СИСТЕМА; АСТЕРОИД; КОМЕТА.

ПРЕДЫСТОРИЯ КОСМИЧЕСКИХ ПОЛЕТОВ

Начиная с Луциана Самосатского (ок. 120–180) (Икаро-Мениппус и Правдивая история) люди мечтали добраться до Луны и узнать ее тайну. Что же касается планет, то сама мысль об экспедиции к ним могла возникнуть лишь после того, как стало ясно, что это не божества и не просто движущиеся огоньки на ночном небе, а тела, подобно Земле обращающиеся вокруг Солнца. Окончательно это выяснилось в эпоху И.Ньютона (1643–1727), объяснившего характер движения планет в Солнечной системе и указавшего принципиальную возможность путешествия от одной планеты к другой. Однако до середины 20 в. не было технической возможности овладеть гигантской энергией, необходимой для преодоления земного тяготения.

После произведений И.Кеплера Сон, или Посмертное сочинение об астрономии Луны (1634), Ф.Годвина Человек на Луне (1638) и С. де Бержерака Иной свет, или Государства и империи Луны (1657), экспедиции к Луне и планетам стали популярной литературной темой. К середине 20 в. тема космических путешествий прочно заняла место в беллетристике, на радио и в кино, вызывая у публики большой интерес.

Однако вплоть до этого времени все фантазии о космических путешествиях имели одну общую деталь – во всех экспедициях присутствовал человек. Сама идея об автоматических механизмах, способных исследовать Луну и планеты, просто не приходила никому в голову. Толчок воображению мог дать только соответствующий уровень техники, который в те годы еще не позволял мечтать о беспилотных космических аппаратах.

К концу Второй мировой войны многие ученые и инженеры поняли, что эра космических полетов приближается. Разработка мощных ракетных двигателей, легких и прочных материалов и конструкций, миниатюрных приборов и особенно развитие электроники сделали возможным практическое осуществление полетов вокруг Земли, к Луне и планетам.

СОЗДАНИЕ КОСМИЧЕСКОЙ ТЕХНИКИ

Удивительно, но для запуска полезной нагрузки на бесконечное расстояние от Земли (т.е. для ее разгона до второй космической скорости) нужно сообщить ей всего лишь вдвое большую энергию, чем для ее вывода на низкую околоземную орбиту. Поэтому первые космические зонды были запущены вскоре после первых искусственных спутников Земли. См. также ОРБИТА.

Все же необходимая для запуска зонда дополнительная энергия требует более мощной ракеты-носителя при той же полезной нагрузке либо меньшей нагрузки при той же ракете. Ограничение веса полезной нагрузки всегда довлеет над разработчиками космических зондов. Обычно для достижения необходимой зонду скорости ракету снабжают дополнительной ступенью. Разработка мощных и надежных многоступенчатых ракет – это долгое и дорогое дело. Носители для космических зондов должны быть особенно надежными, поскольку для запуска обычно отводится небольшое временное окно, когда взаимное положение Земли и намеченной цели таково, что перелет требует минимальных затрат энергии. В другое время затраты энергии возрастают настолько, что экспедиция становится практически невозможной. При полетах на Луну оптимальная ситуация возникает раз в месяц, но при полетах к далеким планетам ее нужно ждать многие месяцы и даже годы.

Другой важный фактор – время перелета. Экспедиции к планетам длятся месяцы и годы. Поэтому все приборы зонда должны быть очень надежными, чтобы вблизи цели выполнить сложный комплекс исследований. Это создает нелегкие технические проблемы. Длительный перелет означает, что для питания бортовых систем электричеством нельзя использовать аккумуляторные батареи – необходим генератор, работающий без ограничений по времени. С этой целью при полетах к Луне и внутренним планетам – Меркурию, Венере и Марсу – применяют солнечные элементы. Но за орбитой Марса, вдали от Солнца, его свет слаб. Поэтому при полетах к Юпитеру и дальше используют изотопный генератор, вырабатывающий ток с помощью термоэлектрического преобразователя из тепла, выделяющегося при распаде радиоактивных изотопов, например плутония-238.

Слежение за космическими зондами и управление ими значительно сложнее, чем спутниками. Для определения точного положения аппарата и передачи на борт команд управления, а также для приема с его борта данных необходимы мощные передатчики и большие антенны на Земле и на самом зонде. Для этих целей были созданы глобальные системы космического радиосопровождения. Например, Сеть дальней космической связи Национального управления по аэронавтике и исследованию космического пространства (НАСА) США, разработанная в Лаборатории реактивного движения (Пасадена, шт. Калифорния), служит для управления космическими зондами и объединяет станции в Голдстоуне (Калифорния), Тидбинбелла (вблизи Канберры, Австралия) и Робледо де Чевела (вблизи Мадрида, Испания). Для связи с космическими зондами используют также станции в Дармштадте (Германия), Усюде (Япония) и Евпатории (Украина).

 NASA     СЕТЬ ДАЛЬНЕЙ КОСМИЧЕСКОЙ СВЯЗИ НАСА использует станции в различных точках Земли для связи с космическими зондами.

Ограниченность скорости света приводит к временной задержке при обмене сигналами между центрами управления на Земле и космическими зондами, достигающей нескольких часов при полетах во внешние области Солнечной системы и делающей невозможным управление зондом в реальном времени. Поэтому команды передаются заранее, и при возникновении неожиданной ситуации уже бывает поздно что-либо изменить. На этот случай зонд должен быть снабжен мощным бортовым компьютером, сравнивающим реальную ситуацию с ожидаемой и вносящим коррективы в команды.

В то же время в процессе перелета зонды находятся в более мягких условиях, чем спутники Земли, которые регулярно переходят с освещенной Солнцем на теневую сторону орбиты, испытывая при этом сильные колебания температуры и тепловые деформации, снижающие надежность работы аппаратуры.

ПОЛЕТЫ К ЛУНЕ

«Пионер».

Разработка первых пяти космических зондов США для пролета мимо Луны и для выхода на окололунную орбиту велась в Управлении перспективных исследований Министерства обороны, а затем была передана в только что образованное НАСА. Скромные возможности носителей того времени (баллистические ракеты среднего радиуса действия «Тор» и «Юпитер») ограничивали полезный груз для полетов к Луне массой от 6 до 40 кг. Постоянная ориентация продольной оси зондов в пространстве относительно звезд поддерживалась их вращением вокруг этой оси.

Первая попытка («Пионер-0», запущен 17 августа 1958) закончилась взрывом носителя на 77-й секунде полета. Первым зондом США, достигшим второй космической скорости, был «Пионер-4», запущенный 3 марта 1959 и прошедший мимо Луны на расстоянии 60 тыс. км – слишком далеко для получения хороших фотографий. Однако он помог уточнить протяженность открытых незадолго до этого радиационных поясов Ван Аллена, окружающих Землю.